留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杏子川地区长6储层压裂液原位置换原油

柏浩 周福建 吴俊霖 丁志远 杨飒飒 盛连奇 姚二冬

柏浩,周福建,吴俊霖,等. 杏子川地区长6储层压裂液原位置换原油[J]. 钻井液与完井液,2024,41(3):396-404 doi: 10.12358/j.issn.1001-5620.2024.03.016
引用本文: 柏浩,周福建,吴俊霖,等. 杏子川地区长6储层压裂液原位置换原油[J]. 钻井液与完井液,2024,41(3):396-404 doi: 10.12358/j.issn.1001-5620.2024.03.016
BAI Hao, ZHOU Fujian, WU Junlin, et al.In-situ displacement of crude oil by fracturing fluid in Chang-6 reservoir in Xingzichuan[J]. Drilling Fluid & Completion Fluid,2024, 41(3):396-404 doi: 10.12358/j.issn.1001-5620.2024.03.016
Citation: BAI Hao, ZHOU Fujian, WU Junlin, et al.In-situ displacement of crude oil by fracturing fluid in Chang-6 reservoir in Xingzichuan[J]. Drilling Fluid & Completion Fluid,2024, 41(3):396-404 doi: 10.12358/j.issn.1001-5620.2024.03.016

杏子川地区长6储层压裂液原位置换原油

doi: 10.12358/j.issn.1001-5620.2024.03.016
基金项目: 国家自然科学基金“纳米乳液在致密砂岩储层中的吸附特性及其解水锁机制研究”(52004306);中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“鄂尔多斯盆地致密油-页岩油富集、高效开发理论与关键技术研究”(ZLZX2020-02)。
详细信息
    作者简介:

    柏浩,博士,1995年生,目前就读于中国石油大学(北京)石油与天然气工程专业,现在从事压裂液技术研究工作。电话15927880862;E-mail:15927880862@163.com。

    通讯作者:

    周福建,E-mail:zhoufj@cup.edu.cn。

  • 中图分类号: TE357.12

In-Situ Displacement of Crude Oil by Fracturing Fluid in Chang-6 Reservoir in Xingzichuan

  • 摘要: 杏子川地区延长组长6储层具有含油饱和度低、油湿性强,非均质性强(渗透率为0.10~1.0 mD)等特征。常规压裂液体系润湿改性能力弱、渗吸置换效果差,亟需研究具有渗吸提采功能的压裂液。借助了核磁共振T2谱手段,测试了不同组成和配比的化学剂对长6储层岩心内微-纳孔径原油的动用能力,并探究了压裂液原位置换原油的影响因素及其渗吸机理。结果表明:带负电的阴离子试剂AX-2更适合动用长6低含油饱和度储层,0.10% AX-2渗吸采收率大于30%,纳米小孔与微米大孔动用程度分别为42.08%与22.62%;将表面活性剂AX-2复配成为10 nm尺寸的纳米乳液AX-1,抗吸附能力更强,动用效果更佳,纳米孔与微米孔动用程度可提升至58.26%与29.70%;界面张力为1.5 mN/m时AX-1最适合动用长6储层原油,此时液体具有较高的渗吸动力与原油剥离能力。优选体系复配后现场压裂稳定,试油效果良好,平均日产油量超过26 t。

     

  • 图  1  不同离子类型试剂核磁渗吸T2谱变化对比

    图  3  阴离子纳米乳液AX-1核磁渗吸T2

    图  2  不同离子类型试剂采收率及原油动用效果对比

    图  4  表面活性剂AX-2与纳米乳液AX-1 的采收率及原油动用效果对比

    图  5  不同界面张力的试剂核磁渗吸T2谱变化对比

    图  6  不同界面张力的试剂采收率及原油动用效果对比

    图  7  优选AX-1试剂和助排剂的粒径及Zeta电位测试

    图  8  优选试剂与在用助排剂对长 6岩心的润湿改性情况对比

    图  9  渗吸瓶内2种液体浸泡后的岩心出油情况

    图  10  优选试剂体系现场压裂施工曲线

    图  11  优选体系试验井与在用体系对比井试油结果对比

  • [1] 王朋,孙灵辉,王核,等. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏,2020,32(5):63-72.

    WANG Peng, SUN Linghui, WANG He, et al. The characteristics and control factors of the Yanchang formation 6 in the Wuqi area of the Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(5):63-72.
    [2] 黄艳. 杏子川油田坪52井区延长组长6储层测井评价[D]. 西安: 西安科技大学, 2013.

    HUANG Yan. Logging evaluation of reservoir 6 in Yanchang formation of Ping 52 well block in Xingzichuan Oilfield[D]. Xi'an: Xi'an University of Science and Technology, 2013.
    [3] 施砍园,庞雄奇,王克,等. 鄂尔多斯盆地华庆地区致密砂岩油藏成藏条件研究[J]. 特种油气藏,2021,28(6):20-26.

    SHI Kanyuan, PANG Xiongqi, WANG Ke, et al. Study on accumulation conditions of tight sandstone reservoirs in huaqing area, ordos basin[J]. Special Oil & Gas Reservoirs, 2021, 28(6):20-26.
    [4] 刘汉斌,唐梅荣,吕宝强,等. 页岩油压裂用纳米变黏滑溜水的合成及其性能评价[J]. 科学技术与工程,2023,23(8):3244-3251.

    LIU Hanbin, TANG Meirong, LYU Baoqiang, et al. Synthesis and performance evaluation of nano variable-viscosity slickwater for shale oil fracturing[J]. Science Technology and Engineering, 2023, 23(8):3244-3251.
    [5] 谢升洪,李伟,冷福,等. 致密砂岩储层可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报,2019,38(5):105-114.

    XIE Shenghong, LI Wei, LENG Fu, et al. Study on the occurrence patterns and constraints of movable fluids in tight sandstone reservoirs: Taking the Chang 6 reservoir of Huaqing Oilfield in the Ordos Basin as an example[J]. Geological Science and Technology Intelligence, 2019, 38(5):105-114.
    [6] 王瑞飞,王立新,李俊鹿,等. 浅层致密砂岩油藏成岩作用及孔隙演化[J]. 地球物理学进展,2020,35(4):1465-1470.

    WANG Ruifei, WANG Lixin, LI Junlu, et al. Diagenesis and porosity evolution of ultra-low permeability and shallow layers sandstone reservoir[J]. Progress in Geophysics, 2020, 35(4):1465-1470.
    [7] 王振宇,郭红强,姚健,等. 表面活性剂对特低渗油藏渗吸驱油的影响[J]. 非常规油气,2022,9(1):77-83.

    WANG Zhenyu, GUO Hongqiang, YAO Jian, et al. Effect of surfactant on imbibition and displacement in ultra-low permeability reservoir[J]. Unconventional Oil & Gas, 2022, 9(1):77-83.
    [8] 党海龙,姜汉桥,王小锋,等. 杏子川超低渗储层孔喉特征对水驱油影响规律与机制研究[J]. 石油科学通报,2020,5(4):541-548.

    DANG Hailong, JIANG Hanqiao, WANG Xiaofeng, et al. The influence of pore throat characteristics of the Xingzichuan ultra-low permeability reservoir on water flooding mechanisms[J]. Petroleum Science Bulletin, 2020, 5(4):541-548.
    [9] 黄兴. 致密砂岩油藏储层微观特征精细表征与水驱后剩余油评价——以姬塬油田长8储层为例[D]. 北京: 中国石油大学(北京), 2017.

    HUANG Xing. Characteristic and quantitative evaluation on remaining oil distribution in tight sandstone reservoir-a case of the Chang 8 Formation in Jiyuan oilfield[D]. Beijing: China University of Petroleum(Beijing), 2017.
    [10] BAI H, ZHOU F J, ZAN J G, et al. Stimulation mechanism and model establishment of enhanced imbibition oil recovery for A nano fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part B: 111189.
    [11] YAO E D, WANG Y C, BAI H, et al. The effect of climbing film on Molybdenum disulfide nanosheets flooding in the tertiary oil recovery[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part A: 111184.
    [12] 杨杰,董朝霞,向启贵,等. 低盐水改变砂岩表面润湿性的pH升高机理[J]. 东北石油大学学报,2018,42(6):104-113.

    YANG Jie, DONG Chaoxia, XIANG Qigui, et al. The pH increase mechanism of wettability alteration on sandstone surface by low saline water[J]. Journal of Northeast Petroleum University, 2018, 42(6):104-113.
    [13] LIU J R, SHENG J J. Investigation of countercurrent imbibition in Oil-Wet tight cores using NMR technology[J]. SPE Journal, 2020, 25(5):2601-2614. doi: 10.2118/201099-PA
    [14] DAI C L, CHENG R, SUN X, et al. Oil migration in nanometer to micrometer sized pores of tight oil sandstone during dynamic surfactant imbibition with online NMR[J]. Fuel, 2019, 245:544-553. doi: 10.1016/j.fuel.2019.01.021
    [15] 黄根,王卫东,徐宏祥,等. 煤矸石硅基介孔材料的制备及重金属离子吸附实验设计[J]. 实验技术与管理,2023,40(8):33-39.

    HUANG Gen, WANG Weidong, XU Hongxiang, et al. Preparation of coal gangue silicon-based mesoporous materials and experimental design for heavy metal ion adsorption[J]. Experimental Technology and Management, 2023, 40(8):33-39.
    [16] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. i. computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1):373-380. doi: 10.1021/ja01145a126
    [17] JIANG Y, SHI Y, XU G, et al. Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on Low-Field nuclear magnetic resonance measurements[J]. Energy & Fuels, 2018, 32(3):3152-3162.
    [18] 梁玉凯,于晓聪,袁辉,等. 低渗透油藏自发生成中相微乳液洗油体系[J]. 油田化学,2021,38(4):690-696.

    LIANG Yukai, YU Xiaocong, YUAN Hui, et al. Spontaneous formation of middle-phase microemulsion oil washing system in low permeability reservoir[J]. Oilfield Chemistry, 2021, 38(4):690-696.
    [19] 杨剑,杨玲,王鑫海,等. 安塞油田长6油藏离子匹配水驱技术研究与应用[J]. 石油化工应用,2020,39(2):70-73.

    YANG Jian, YANG Ling, WANG Xinhai, et al. Research and application of ion matching water flooding technology for Chang 6 reservoir in Ansai oilfield[J]. Petrochemical Industry Application, 2020, 39(2):70-73.
    [20] HOSSEIN JAVADI A, FATEMI M. Impact of salinity on fluid/fluid and rock/fluid interactions in enhanced oil recovery by hybrid low salinity water and surfactant flooding from fractured porous media[J]. Fuel, 2022, 329:125426. doi: 10.1016/j.fuel.2022.125426
    [21] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review Letters, 1921, 17(3):273.
    [22] LI L, SUN Y, LI Y, et al. Interface properties evolution and imbibition mechanism of gel breaking fluid of clean fracturing fluid[J]. Journal of Molecular Liquids, 2022, 359:118952. doi: 10.1016/j.molliq.2022.118952
  • 加载中
图(11)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  105
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-02-10
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回