[1] |
王朋,孙灵辉,王核,等. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏,2020,32(5):63-72.WANG Peng, SUN Linghui, WANG He, et al. The characteristics and control factors of the Yanchang formation 6 in the Wuqi area of the Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(5):63-72.
|
[2] |
黄艳. 杏子川油田坪52井区延长组长6储层测井评价[D]. 西安: 西安科技大学, 2013.HUANG Yan. Logging evaluation of reservoir 6 in Yanchang formation of Ping 52 well block in Xingzichuan Oilfield[D]. Xi'an: Xi'an University of Science and Technology, 2013.
|
[3] |
施砍园,庞雄奇,王克,等. 鄂尔多斯盆地华庆地区致密砂岩油藏成藏条件研究[J]. 特种油气藏,2021,28(6):20-26.SHI Kanyuan, PANG Xiongqi, WANG Ke, et al. Study on accumulation conditions of tight sandstone reservoirs in huaqing area, ordos basin[J]. Special Oil & Gas Reservoirs, 2021, 28(6):20-26.
|
[4] |
刘汉斌,唐梅荣,吕宝强,等. 页岩油压裂用纳米变黏滑溜水的合成及其性能评价[J]. 科学技术与工程,2023,23(8):3244-3251.LIU Hanbin, TANG Meirong, LYU Baoqiang, et al. Synthesis and performance evaluation of nano variable-viscosity slickwater for shale oil fracturing[J]. Science Technology and Engineering, 2023, 23(8):3244-3251.
|
[5] |
谢升洪,李伟,冷福,等. 致密砂岩储层可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报,2019,38(5):105-114.XIE Shenghong, LI Wei, LENG Fu, et al. Study on the occurrence patterns and constraints of movable fluids in tight sandstone reservoirs: Taking the Chang 6 reservoir of Huaqing Oilfield in the Ordos Basin as an example[J]. Geological Science and Technology Intelligence, 2019, 38(5):105-114.
|
[6] |
王瑞飞,王立新,李俊鹿,等. 浅层致密砂岩油藏成岩作用及孔隙演化[J]. 地球物理学进展,2020,35(4):1465-1470.WANG Ruifei, WANG Lixin, LI Junlu, et al. Diagenesis and porosity evolution of ultra-low permeability and shallow layers sandstone reservoir[J]. Progress in Geophysics, 2020, 35(4):1465-1470.
|
[7] |
王振宇,郭红强,姚健,等. 表面活性剂对特低渗油藏渗吸驱油的影响[J]. 非常规油气,2022,9(1):77-83.WANG Zhenyu, GUO Hongqiang, YAO Jian, et al. Effect of surfactant on imbibition and displacement in ultra-low permeability reservoir[J]. Unconventional Oil & Gas, 2022, 9(1):77-83.
|
[8] |
党海龙,姜汉桥,王小锋,等. 杏子川超低渗储层孔喉特征对水驱油影响规律与机制研究[J]. 石油科学通报,2020,5(4):541-548.DANG Hailong, JIANG Hanqiao, WANG Xiaofeng, et al. The influence of pore throat characteristics of the Xingzichuan ultra-low permeability reservoir on water flooding mechanisms[J]. Petroleum Science Bulletin, 2020, 5(4):541-548.
|
[9] |
黄兴. 致密砂岩油藏储层微观特征精细表征与水驱后剩余油评价——以姬塬油田长8储层为例[D]. 北京: 中国石油大学(北京), 2017.HUANG Xing. Characteristic and quantitative evaluation on remaining oil distribution in tight sandstone reservoir-a case of the Chang 8 Formation in Jiyuan oilfield[D]. Beijing: China University of Petroleum(Beijing), 2017.
|
[10] |
BAI H, ZHOU F J, ZAN J G, et al. Stimulation mechanism and model establishment of enhanced imbibition oil recovery for A nano fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part B: 111189.
|
[11] |
YAO E D, WANG Y C, BAI H, et al. The effect of climbing film on Molybdenum disulfide nanosheets flooding in the tertiary oil recovery[J]. Journal of Petroleum Science and Engineering, 2023, 220, Part A: 111184.
|
[12] |
杨杰,董朝霞,向启贵,等. 低盐水改变砂岩表面润湿性的pH升高机理[J]. 东北石油大学学报,2018,42(6):104-113.YANG Jie, DONG Chaoxia, XIANG Qigui, et al. The pH increase mechanism of wettability alteration on sandstone surface by low saline water[J]. Journal of Northeast Petroleum University, 2018, 42(6):104-113.
|
[13] |
LIU J R, SHENG J J. Investigation of countercurrent imbibition in Oil-Wet tight cores using NMR technology[J]. SPE Journal, 2020, 25(5):2601-2614. doi: 10.2118/201099-PA
|
[14] |
DAI C L, CHENG R, SUN X, et al. Oil migration in nanometer to micrometer sized pores of tight oil sandstone during dynamic surfactant imbibition with online NMR[J]. Fuel, 2019, 245:544-553. doi: 10.1016/j.fuel.2019.01.021
|
[15] |
黄根,王卫东,徐宏祥,等. 煤矸石硅基介孔材料的制备及重金属离子吸附实验设计[J]. 实验技术与管理,2023,40(8):33-39.HUANG Gen, WANG Weidong, XU Hongxiang, et al. Preparation of coal gangue silicon-based mesoporous materials and experimental design for heavy metal ion adsorption[J]. Experimental Technology and Management, 2023, 40(8):33-39.
|
[16] |
BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. i. computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1):373-380. doi: 10.1021/ja01145a126
|
[17] |
JIANG Y, SHI Y, XU G, et al. Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on Low-Field nuclear magnetic resonance measurements[J]. Energy & Fuels, 2018, 32(3):3152-3162.
|
[18] |
梁玉凯,于晓聪,袁辉,等. 低渗透油藏自发生成中相微乳液洗油体系[J]. 油田化学,2021,38(4):690-696.LIANG Yukai, YU Xiaocong, YUAN Hui, et al. Spontaneous formation of middle-phase microemulsion oil washing system in low permeability reservoir[J]. Oilfield Chemistry, 2021, 38(4):690-696.
|
[19] |
杨剑,杨玲,王鑫海,等. 安塞油田长6油藏离子匹配水驱技术研究与应用[J]. 石油化工应用,2020,39(2):70-73.YANG Jian, YANG Ling, WANG Xinhai, et al. Research and application of ion matching water flooding technology for Chang 6 reservoir in Ansai oilfield[J]. Petrochemical Industry Application, 2020, 39(2):70-73.
|
[20] |
HOSSEIN JAVADI A, FATEMI M. Impact of salinity on fluid/fluid and rock/fluid interactions in enhanced oil recovery by hybrid low salinity water and surfactant flooding from fractured porous media[J]. Fuel, 2022, 329:125426. doi: 10.1016/j.fuel.2022.125426
|
[21] |
WASHBURN E W. The dynamics of capillary flow[J]. Physical Review Letters, 1921, 17(3):273.
|
[22] |
LI L, SUN Y, LI Y, et al. Interface properties evolution and imbibition mechanism of gel breaking fluid of clean fracturing fluid[J]. Journal of Molecular Liquids, 2022, 359:118952. doi: 10.1016/j.molliq.2022.118952
|