留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水合物层骨架重构的低温早强胶凝材料

徐鸿志 宋伟宸 步玉环 向常友 柳华杰 路畅

徐鸿志,宋伟宸,步玉环,等. 基于水合物层骨架重构的低温早强胶凝材料[J]. 钻井液与完井液,2024,41(3):357-363 doi: 10.12358/j.issn.1001-5620.2024.03.011
引用本文: 徐鸿志,宋伟宸,步玉环,等. 基于水合物层骨架重构的低温早强胶凝材料[J]. 钻井液与完井液,2024,41(3):357-363 doi: 10.12358/j.issn.1001-5620.2024.03.011
XU Hongzhi, SONG Weichen, BU Yuhuan, et al.A low temperature early strength gel material based on reconstruction of hydrate layer frame[J]. Drilling Fluid & Completion Fluid,2024, 41(3):357-363 doi: 10.12358/j.issn.1001-5620.2024.03.011
Citation: XU Hongzhi, SONG Weichen, BU Yuhuan, et al.A low temperature early strength gel material based on reconstruction of hydrate layer frame[J]. Drilling Fluid & Completion Fluid,2024, 41(3):357-363 doi: 10.12358/j.issn.1001-5620.2024.03.011

基于水合物层骨架重构的低温早强胶凝材料

doi: 10.12358/j.issn.1001-5620.2024.03.011
基金项目: 中国石油天然气股份有限公司重大科技项目“海域天然气水合物试采工程基础及关键技术”(ZD2019-184)。
详细信息
    作者简介:

    徐鸿志,正高级工程师,在读博士,1982年生,就读于中国石油大学(华东)石油工程专业,现在从事海上油气储层增产改造技术。E-mail:xuhz.cpoe@cnpc.com.cn。

    通讯作者:

    步玉环,教授,博士,博师生导师,研究方向为固完井工程技术。E-mail:buyuhuan@163.com。

  • 中图分类号: TE256.6

A Low Temperature Early Strength Gel Material Based on Reconstruction of Hydrate Layer Frame

  • 摘要: 针对于天然气水合物能源试采过程中出砂导致试采作业被迫终止的问题,在水合物第2次试采工作经验和层内加固、防砂理论的基础上,进行了水合物层骨架重构的低温早强胶凝材料体系构建研究。该研究对比了嘉华G级、超细水泥和早强水泥的低温早期强度和长期长度、粒径分布,基于满足层内加固骨架重构孔隙尺寸,进行了低温早强胶凝材料组分设计,以水泥浆流动度、早强性及成本为目标,尽可能提高固结体的早期强度,为后续增渗提供更多强度下降空间。通过研究超细油井水泥与嘉华G级水泥的配比、早强剂优选及加量优化,构建出了低温早强胶凝材料体系,该体系在15 ℃水浴下24 h抗压强度可达到12.86 MPa,具有良好的流动性、稠化时间和失水可控性,相较于文献的低温早强水泥浆体系具有更好的增渗高强特性。该研究为后续研究水合物层内骨架重构高渗透、高强度的工作液体系奠定了材料基础。

     

  • 表  1  水泥材料的化学组成    %

    水泥SiO2Al2O3Fe2O3CaOMgOK2OSO3
    嘉华G级水泥22.703.394.8165.60.900.371.21
    超细水泥20.368.573.1958.595.120.592.03
    早强水泥0.4577.230.4718.250.430.672.98
    下载: 导出CSV

    表  2  嘉华G级水泥不同养护时间的抗压强度

    常用胶凝材料加量/
    %
    分散剂/
    %
    t养护/
    d
    水固比p/
    MPa
    嘉华G级水泥100010.448.66
    100030.4421.49
    100070.4431.52
    超细水泥1000.2510.5013.75
    1000.2530.5023.29
    1000.2570.5031.84
    早强水泥100010.4420.09
    100030.4425.31
    100070.4428.22
    下载: 导出CSV

    表  3  3种水泥粒径及比表面积对比

    水泥粒径/μm比表面积/
    m2·g−1
    最大10%
    以上
    50%
    以上
    90%
    以上
    平均
    嘉华G级水泥≥64≤5.98≤18.31≤40.3821.180.171
    超细油井水泥≤35≤2.354≤7.19≤15.528.4350.505
    早强水泥≥103≤3.534≤19.73≤64.4427.570.297
    下载: 导出CSV

    表  4  超细油井水泥和嘉华G级水泥复配体系的抗压强度

    超细油井
    水泥/%
    嘉华G级
    水泥/%
    流动度/
    cm
    p1 d/
    MPa
    p3 d/
    MPa
    901014.512.4412.54
    802015.89.7112.91
    703018.39.5013.48
    604020.59.1214.37
    505023.17.3713.44
    下载: 导出CSV

    表  5  不同类型早强剂对固结体1d抗压强度的影响

    早强剂加量/%p1 d/MPa
    09.12
    氯化钙0.5012.13
    三乙醇胺0.0511.73
    有机曼尼希0.037.86
    氯化锂1.0012.86
    硫酸钠2.0011.27
    下载: 导出CSV

    表  6  早强剂加量对固结体1 d抗压强度的影响

    早强剂不同加量(%)下的1 d抗压强度/MPa
    00.250.500.751.001.251.50
    氯化锂9.1210.5511.7811.8112.8612.5212.14
    氯化钙9.1210.9311.4310.3410.0711.3410.90
    下载: 导出CSV

    表  7  早强胶凝材料体系的抗压强度与渗透性的关系

    增渗剂p1 d/
    MPa
    1 d渗透率/
    10−3 μm2
    7 d渗透率/
    10−3 μm2
    012.861.640.008
    15%煤油+0.13%复合乳化剂5.1613.967.820
    15%煤油+0.25%复合乳化剂4.9523.9612.130
    15%煤油+0.50%复合乳化剂4.0624.6212.230
    下载: 导出CSV

    表  8  文献早强胶凝材料体系的抗压强度与渗透性的关系

    增渗剂p1 d/
    MPa
    1 d渗透率/
    10−3 μm2
    7 d渗透率/
    10−3 μm2
    06.200.960.004
    15%煤油+0.13%复合乳化剂3.658.274.820
    15%煤油+0.25%复合乳化剂2.9513.237.680
    15%煤油+0.50%复合乳化剂1.069.560
    下载: 导出CSV
  • [1] 吴西顺,黄文斌,刘文超,等. 全球天然气水合物资源潜力评价及勘查试采进展[J]. 海洋地质前沿,2017,33(7):63-78.

    WU Xishun, HUANG Wenbin, LIU Wenchao, et al. Evaluation of global natural gas hydrate resource potential and progress of exploration and test production[J]. Marine Geology Frontiers, 2017, 33(7):63-78.
    [2] 张光学,梁金强,陆敬安,等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业,2014,34(11):1-10.

    ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10.
    [3] 刘昌岭,李彦龙,孙建业,等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质,2017,37(5):12-26.

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5):12-26.
    [4] 董长银,闫切海,李彦龙,等. 天然气水合物储层颗粒级尺度微观出砂数值模拟[J]. 中国石油大学学报(自然科学版),2019,43(6):77-87.

    DONG Changyin, YAN Qiehai, LI Yanlong, et al. Numerical simulation of sand production based on a grain scale microcosmic model for natural gas hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(6):77-87.
    [5] DU J P, BU Y H, SHEN Zhonghou, et al. Maximum penetration depth and penetration time predicting model of cementing fluid flow through wellbore into weakly consolidated formation[J]. Fractals, 2019, 27(8):1950132. doi: 10.1142/S0218348X19501329
    [6] DU J P, BU Y H, SHEN Z H. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix[J]. Construction and Building Materials, 2018, 164:103-112. doi: 10.1016/j.conbuildmat.2017.12.200
    [7] DU J P, BU Y H, SHEN Z H, et al. A novel fluid for use in oil and gas well construction to prevent the oil and gas leak from the wellbore[J]. Construction and Building Materials, 2019, 217:626-637. doi: 10.1016/j.conbuildmat.2019.05.100
    [8] DU J P, BU Y H, SHEN Z H, et al. Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature[J]. Materials & Design, 2016, 109:133-145.
    [9] BU Y H, DU J P, GUO S L, et al. Properties of oil well cement with high dosage of metakaolin[J]. Construction and Building Materials, 2016, 112:39-48. doi: 10.1016/j.conbuildmat.2016.02.173
    [10] YUHUAN B, JIAPEI D, HUAJIE L, et al. A integrated liquid of Cementing-Formation welding integrated fluid to weakly cemented strata in deep water[M]. [S. l. ]: [s. n. ], 2017.
    [11] YUHUAN B, DONG L, HUAJIE L, et al. Theory and implementation method of strengthening and preventing collapse and sand control in natural gas hydrate formation[M]. [S. l. ]: [s. n. ], 2021.
    [12] 步玉环, 林栋, 柳华杰, 等. 天然气水合物地层层内加固防塌、防砂理论及实现方法: CN202110972005.0[P]. 2021-08-24.

    BU Yuhuan, LIN Dong, LIU Huajie, et al. Theory and realization method of anti-collapsing and sand control in layer reinforcement of natural gas hydrate: CN202110972005.0[P]. 2021-08-24.
    [13] 王成文,陈大钧,陈二丁,等. 复杂井固井低密度水泥浆体系性能研究[J]. 天然气工业,2006,26(7):65-67.

    WANG Chengwen, CHEN Dajun, CHEN Erding, et al. Study on properties of low-density cement slurry for complicated cementing[J]. Natural Gas Industry, 2006, 26(7):65-67.
    [14] PLANK J, ECHT T. C-S-H-PCE nanofoils: a new generation of accelerators for oil well cement[C]//SPE International Conference on Oilfield Chemistry. Galveston: SPE, 2019: SPE-193639-MS.
    [15] 王瑞和,齐志刚,步玉环,等. 一种新型曼尼希碱促凝剂的性能研究[J]. 石油钻探技术,2009,37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003

    WANG Ruihe, QI Zhigang, BU Yuhuan, et al. Study of a new mannich-based accelerating agent[J]. Petroleum Drilling Techniques, 2009, 37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003
    [16] 侯献海,步玉环,郭胜来,等. 纳米二氧化硅复合早强剂的开发与性能评价[J]. 石油钻采工艺,2016,38(3):322-326.

    HOU Xianhai, BU Yuhuan, GUO Shenglai, et al. Development and performance evaluation of Nano-SiO2 complex accelerator[J]. Oil Drilling & Production Technology, 2016, 38(3):322-326.
    [17] 步玉环,侯献海,郭胜来. 低温固井水泥浆体系的室内研究[J]. 钻井液与完井液,2016,33(1):79-83.

    BU Yuhuan, HOU Xianhai, GUO Shenglai. Study on low temperature cementing slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):79-83.
    [18] 孟双,宋建建,许明标,等. 新型低温固井早强剂性能研究[J]. 钻井液与完井液,2023,40(1):96-102.

    MENG Shuang, SONG Jianjian, XU Mingbiao, et al. Study on the performance of a new low temperature early strength agent for well cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):96-102.
    [19] TALONG D, KUMAR A, SARMA A, et al. 200 and counting: unlocking cbm potential with high-strength, low-density cement slurry[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Jakarta: SPE, 2017: SPE-186976-MS.
    [20] 宋茂林. 深水低温早强水泥浆体系的研究[J]. 化工管理,2020(8):110-111.

    SONG Maolin. Study on deep water low temperature and early strength cement slurry system[J]. Chemical Enterprise Management, 2020(8):110-111.
    [21] 郭永宾,李中,刘和兴,等. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液,2019,36(4):500-505.

    GUO Yongbin, LI Zhong, LIU Hexing, et al. Development of a low temperature early strength cement slurry with low exothermic heat of hydration[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):500-505.
    [22] 王清顺,陈宇,罗宇维,等. 基于分形理论的低热早强固井水泥浆体系研究[J]. 海洋工程装备与技术,2019,6(S1):334-337.

    WANG Qingshun, CHEN Yu, LUO Yuwei, et al. A low hydration heat and early strength cement slurry system based on fractal theory[J]. Ocean Engineering Equipment and Technology, 2019, 6(S1):334-337.
    [23] BU Y H, MA R, LIU H J, et al. Low hydration exothermic well cement system: the application of energy storage microspheres prepared by high-strength hollow microspheres carrying phase change materials[J]. Cement and Concrete Composites, 2021, 117:103907. doi: 10.1016/j.cemconcomp.2020.103907
    [24] 吕斌,周琛洋,邱爱民,等. 防漏早强韧性水泥浆体系的室内研究[J]. 钻井液与完井液,2020,37(2):226-231.

    LYU Bin, ZHOU Chenyang, QIU Aimin, et al. Laboratory study on leak-proof early strength tough cement surry[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):226-231.
    [25] 田野,符军放,宋维凯,等. 一种新型超深水低温早强剂[J]. 钻井液与完井液,2019,36(2):224-228.

    TIAN Ye, FU Junfang, SONG Weikai, et al. A new low temperature early strength agent for ultradeep water operation[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):224-228.
    [26] 侯献海. 低温早强水泥体系的研究[D]. 青岛: 中国石油大学(华东), 2017.

    HOU Xianhai. Research of low temperature and early strength cement system[D]. Qingdao: China University of Petroleum(East China), 2017.
    [27] 金惠玲,孙振平,庞敏,等. 铝酸盐水泥后期强度倒缩的原因及解决措施[J]. 混凝土世界,2020(10):46-52.

    JIN Huiling, SUN Zhenping, PANG Min, et al. The causes and solutions of late strength collapse of aluminate cement[J]. Building Decoration Materials World, 2020(10):46-52.
    [28] 沈海超. 天然气水合物藏降压开采流固耦合数值模拟研究[D]. 青岛: 中国石油大学(华东), 2009.

    SHEN Haichao. Fluid-solid coupling numerical simulation on natural gas production from hydrate reservoirs by depressurization[D]. Qingdao: China University of Petroleum(East China), 2009.
  • 加载中
表(8)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  77
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 修回日期:  2023-12-25
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回