A Low Temperature Early Strength Gel Material Based on Reconstruction of Hydrate Layer Frame
-
摘要: 针对于天然气水合物能源试采过程中出砂导致试采作业被迫终止的问题,在水合物第2次试采工作经验和层内加固、防砂理论的基础上,进行了水合物层骨架重构的低温早强胶凝材料体系构建研究。该研究对比了嘉华G级、超细水泥和早强水泥的低温早期强度和长期长度、粒径分布,基于满足层内加固骨架重构孔隙尺寸,进行了低温早强胶凝材料组分设计,以水泥浆流动度、早强性及成本为目标,尽可能提高固结体的早期强度,为后续增渗提供更多强度下降空间。通过研究超细油井水泥与嘉华G级水泥的配比、早强剂优选及加量优化,构建出了低温早强胶凝材料体系,该体系在15 ℃水浴下24 h抗压强度可达到12.86 MPa,具有良好的流动性、稠化时间和失水可控性,相较于文献的低温早强水泥浆体系具有更好的增渗高强特性。该研究为后续研究水合物层内骨架重构高渗透、高强度的工作液体系奠定了材料基础。Abstract: In the trial production of natural gas hydrate resources, sand production often forces the operation to terminate. A study, aimed at the construction of low temperature early strength gel materials through reconstruction of hydrate layer frames, is conducted based on the experiences gained in the second trail production of hydrate resources and the theory of intralayer reinforcement and sand control. In the study, the low temperature early strength, the long-term length and the particle size distribution of three kinds of cement, which are Jiahua class G, ultra-fine cement and early strength cement, are compared. Based on satisfying the requirements of reconstructing pore sizes through intralayer reinforcement of frames, the components of the low temperature early strength gel materials are designed. The early strength of the solidification body is increased to a degree that is as high as possible taking into account the fluidity of the cement slurry, the early strength and the cost as the main design targets, thereby leaving more space for the strength decline in subsequent permeability improvement. By studying the ratio of the ultra-fine oil well cement to the Jiahua class G cement, optimizing the early strength agents and their concentrations, a low temperature early strength gel system is developed. The low temperature early strength gel system has 24 h compressive strength in 15 ℃ water bath of 12.86 MPa, good fluidity and controllable thickening time and filtration rate. Compared with other low temperature early strength cement slurries introduced in relevant literatures, this cement slurry has better permeability enhancement and high strength characteristics. This study has laid the material foundation for subsequent researches on frame reconstructing high permeability high strength working fluid systems within hydrate layers.
-
Key words:
- Hydrate layer /
- Frame reconstruction /
- Low temperature early strength /
- Gel material
-
表 1 水泥材料的化学组成 %
水泥 SiO2 Al2O3 Fe2O3 CaO MgO K2O SO3 嘉华G级水泥 22.70 3.39 4.81 65.6 0.90 0.37 1.21 超细水泥 20.36 8.57 3.19 58.59 5.12 0.59 2.03 早强水泥 0.45 77.23 0.47 18.25 0.43 0.67 2.98 表 2 嘉华G级水泥不同养护时间的抗压强度
常用胶凝材料 加量/
%分散剂/
%t养护/
d水固比 p/
MPa嘉华G级水泥 100 0 1 0.44 8.66 100 0 3 0.44 21.49 100 0 7 0.44 31.52 超细水泥 100 0.25 1 0.50 13.75 100 0.25 3 0.50 23.29 100 0.25 7 0.50 31.84 早强水泥 100 0 1 0.44 20.09 100 0 3 0.44 25.31 100 0 7 0.44 28.22 表 3 3种水泥粒径及比表面积对比
水泥 粒径/μm 比表面积/
m2·g−1最大 10%
以上50%
以上90%
以上平均 嘉华G级水泥 ≥64 ≤5.98 ≤18.31 ≤40.38 21.18 0.171 超细油井水泥 ≤35 ≤2.354 ≤7.19 ≤15.52 8.435 0.505 早强水泥 ≥103 ≤3.534 ≤19.73 ≤64.44 27.57 0.297 表 4 超细油井水泥和嘉华G级水泥复配体系的抗压强度
超细油井
水泥/%嘉华G级
水泥/%流动度/
cmp1 d/
MPap3 d/
MPa90 10 14.5 12.44 12.54 80 20 15.8 9.71 12.91 70 30 18.3 9.50 13.48 60 40 20.5 9.12 14.37 50 50 23.1 7.37 13.44 表 5 不同类型早强剂对固结体1d抗压强度的影响
早强剂 加量/% p1 d/MPa 无 0 9.12 氯化钙 0.50 12.13 三乙醇胺 0.05 11.73 有机曼尼希 0.03 7.86 氯化锂 1.00 12.86 硫酸钠 2.00 11.27 表 6 早强剂加量对固结体1 d抗压强度的影响
早强剂 不同加量(%)下的1 d抗压强度/MPa 0 0.25 0.50 0.75 1.00 1.25 1.50 氯化锂 9.12 10.55 11.78 11.81 12.86 12.52 12.14 氯化钙 9.12 10.93 11.43 10.34 10.07 11.34 10.90 表 7 早强胶凝材料体系的抗压强度与渗透性的关系
增渗剂 p1 d/
MPa1 d渗透率/
10−3 μm27 d渗透率/
10−3 μm20 12.86 1.64 0.008 15%煤油+0.13%复合乳化剂 5.16 13.96 7.820 15%煤油+0.25%复合乳化剂 4.95 23.96 12.130 15%煤油+0.50%复合乳化剂 4.06 24.62 12.230 表 8 文献早强胶凝材料体系的抗压强度与渗透性的关系
增渗剂 p1 d/
MPa1 d渗透率/
10−3 μm27 d渗透率/
10−3 μm20 6.20 0.96 0.004 15%煤油+0.13%复合乳化剂 3.65 8.27 4.820 15%煤油+0.25%复合乳化剂 2.95 13.23 7.680 15%煤油+0.50%复合乳化剂 1.06 9.560 -
[1] 吴西顺,黄文斌,刘文超,等. 全球天然气水合物资源潜力评价及勘查试采进展[J]. 海洋地质前沿,2017,33(7):63-78.WU Xishun, HUANG Wenbin, LIU Wenchao, et al. Evaluation of global natural gas hydrate resource potential and progress of exploration and test production[J]. Marine Geology Frontiers, 2017, 33(7):63-78. [2] 张光学,梁金强,陆敬安,等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业,2014,34(11):1-10.ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11):1-10. [3] 刘昌岭,李彦龙,孙建业,等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质,2017,37(5):12-26.LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5):12-26. [4] 董长银,闫切海,李彦龙,等. 天然气水合物储层颗粒级尺度微观出砂数值模拟[J]. 中国石油大学学报(自然科学版),2019,43(6):77-87.DONG Changyin, YAN Qiehai, LI Yanlong, et al. Numerical simulation of sand production based on a grain scale microcosmic model for natural gas hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2019, 43(6):77-87. [5] DU J P, BU Y H, SHEN Zhonghou, et al. Maximum penetration depth and penetration time predicting model of cementing fluid flow through wellbore into weakly consolidated formation[J]. Fractals, 2019, 27(8):1950132. doi: 10.1142/S0218348X19501329 [6] DU J P, BU Y H, SHEN Z H. Interfacial properties and nanostructural characteristics of epoxy resin in cement matrix[J]. Construction and Building Materials, 2018, 164:103-112. doi: 10.1016/j.conbuildmat.2017.12.200 [7] DU J P, BU Y H, SHEN Z H, et al. A novel fluid for use in oil and gas well construction to prevent the oil and gas leak from the wellbore[J]. Construction and Building Materials, 2019, 217:626-637. doi: 10.1016/j.conbuildmat.2019.05.100 [8] DU J P, BU Y H, SHEN Z H, et al. Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature[J]. Materials & Design, 2016, 109:133-145. [9] BU Y H, DU J P, GUO S L, et al. Properties of oil well cement with high dosage of metakaolin[J]. Construction and Building Materials, 2016, 112:39-48. doi: 10.1016/j.conbuildmat.2016.02.173 [10] YUHUAN B, JIAPEI D, HUAJIE L, et al. A integrated liquid of Cementing-Formation welding integrated fluid to weakly cemented strata in deep water[M]. [S. l. ]: [s. n. ], 2017. [11] YUHUAN B, DONG L, HUAJIE L, et al. Theory and implementation method of strengthening and preventing collapse and sand control in natural gas hydrate formation[M]. [S. l. ]: [s. n. ], 2021. [12] 步玉环, 林栋, 柳华杰, 等. 天然气水合物地层层内加固防塌、防砂理论及实现方法: CN202110972005.0[P]. 2021-08-24.BU Yuhuan, LIN Dong, LIU Huajie, et al. Theory and realization method of anti-collapsing and sand control in layer reinforcement of natural gas hydrate: CN202110972005.0[P]. 2021-08-24. [13] 王成文,陈大钧,陈二丁,等. 复杂井固井低密度水泥浆体系性能研究[J]. 天然气工业,2006,26(7):65-67.WANG Chengwen, CHEN Dajun, CHEN Erding, et al. Study on properties of low-density cement slurry for complicated cementing[J]. Natural Gas Industry, 2006, 26(7):65-67. [14] PLANK J, ECHT T. C-S-H-PCE nanofoils: a new generation of accelerators for oil well cement[C]//SPE International Conference on Oilfield Chemistry. Galveston: SPE, 2019: SPE-193639-MS. [15] 王瑞和,齐志刚,步玉环,等. 一种新型曼尼希碱促凝剂的性能研究[J]. 石油钻探技术,2009,37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003WANG Ruihe, QI Zhigang, BU Yuhuan, et al. Study of a new mannich-based accelerating agent[J]. Petroleum Drilling Techniques, 2009, 37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003 [16] 侯献海,步玉环,郭胜来,等. 纳米二氧化硅复合早强剂的开发与性能评价[J]. 石油钻采工艺,2016,38(3):322-326.HOU Xianhai, BU Yuhuan, GUO Shenglai, et al. Development and performance evaluation of Nano-SiO2 complex accelerator[J]. Oil Drilling & Production Technology, 2016, 38(3):322-326. [17] 步玉环,侯献海,郭胜来. 低温固井水泥浆体系的室内研究[J]. 钻井液与完井液,2016,33(1):79-83.BU Yuhuan, HOU Xianhai, GUO Shenglai. Study on low temperature cementing slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):79-83. [18] 孟双,宋建建,许明标,等. 新型低温固井早强剂性能研究[J]. 钻井液与完井液,2023,40(1):96-102.MENG Shuang, SONG Jianjian, XU Mingbiao, et al. Study on the performance of a new low temperature early strength agent for well cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):96-102. [19] TALONG D, KUMAR A, SARMA A, et al. 200 and counting: unlocking cbm potential with high-strength, low-density cement slurry[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Jakarta: SPE, 2017: SPE-186976-MS. [20] 宋茂林. 深水低温早强水泥浆体系的研究[J]. 化工管理,2020(8):110-111.SONG Maolin. Study on deep water low temperature and early strength cement slurry system[J]. Chemical Enterprise Management, 2020(8):110-111. [21] 郭永宾,李中,刘和兴,等. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液,2019,36(4):500-505.GUO Yongbin, LI Zhong, LIU Hexing, et al. Development of a low temperature early strength cement slurry with low exothermic heat of hydration[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):500-505. [22] 王清顺,陈宇,罗宇维,等. 基于分形理论的低热早强固井水泥浆体系研究[J]. 海洋工程装备与技术,2019,6(S1):334-337.WANG Qingshun, CHEN Yu, LUO Yuwei, et al. A low hydration heat and early strength cement slurry system based on fractal theory[J]. Ocean Engineering Equipment and Technology, 2019, 6(S1):334-337. [23] BU Y H, MA R, LIU H J, et al. Low hydration exothermic well cement system: the application of energy storage microspheres prepared by high-strength hollow microspheres carrying phase change materials[J]. Cement and Concrete Composites, 2021, 117:103907. doi: 10.1016/j.cemconcomp.2020.103907 [24] 吕斌,周琛洋,邱爱民,等. 防漏早强韧性水泥浆体系的室内研究[J]. 钻井液与完井液,2020,37(2):226-231.LYU Bin, ZHOU Chenyang, QIU Aimin, et al. Laboratory study on leak-proof early strength tough cement surry[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):226-231. [25] 田野,符军放,宋维凯,等. 一种新型超深水低温早强剂[J]. 钻井液与完井液,2019,36(2):224-228.TIAN Ye, FU Junfang, SONG Weikai, et al. A new low temperature early strength agent for ultradeep water operation[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):224-228. [26] 侯献海. 低温早强水泥体系的研究[D]. 青岛: 中国石油大学(华东), 2017.HOU Xianhai. Research of low temperature and early strength cement system[D]. Qingdao: China University of Petroleum(East China), 2017. [27] 金惠玲,孙振平,庞敏,等. 铝酸盐水泥后期强度倒缩的原因及解决措施[J]. 混凝土世界,2020(10):46-52.JIN Huiling, SUN Zhenping, PANG Min, et al. The causes and solutions of late strength collapse of aluminate cement[J]. Building Decoration Materials World, 2020(10):46-52. [28] 沈海超. 天然气水合物藏降压开采流固耦合数值模拟研究[D]. 青岛: 中国石油大学(华东), 2009.SHEN Haichao. Fluid-solid coupling numerical simulation on natural gas production from hydrate reservoirs by depressurization[D]. Qingdao: China University of Petroleum(East China), 2009. -

计量
- 文章访问数: 257
- HTML全文浏览量: 77
- PDF下载量: 45
- 被引次数: 0