Use of Compound Desulfurizing Agent in High Sulfur Feixianguan Formation Drilling in Northeast Sichuan with Oil Based Drilling Fluids
-
摘要: 川东北地区飞仙关组气藏属于高含硫气藏~特高含硫气藏,针对川东北飞仙关高含硫气藏地质特点和钻井液技术难点分析,提出油基钻井液复合除硫技术对策。通过室内实验优选出除硫效果好的除硫剂,并进行了优选除硫剂复合配方优化研究和除硫剂高温老化除硫效果评价实验。研究表明,复合配方3%YT-3+3%CLC-2+3%JD-2的H2S预防率高达99.14%,清除率达到100%,具有优良的除硫能力,复合配方中的锌基类除硫剂与钻井液中的H2S反应生成稳定的难溶硫化物(ZnS),三嗪类除硫剂和醇醚酰胺类除硫剂主要通过物理和化学反应作用除硫,反应比较迅速,且不可逆,能够去除钻井液中的硫化氢,消除硫化氢对钻井液性能的影响和对钻具的腐蚀。该复合除硫技术在坡005-X4井和坡002-H5井飞仙关高含硫地层现场应用非常成功,在钻进过程中以及起下钻循环排后效期间地面均未检测到H2S气体溢出,钻井液中S2−含量始终监测为零,充分说明复合除硫技术除硫效果显著,能够满足高含硫井钻进的要求,为下川东高含硫气藏钻井工程除硫剂的优选提供良好借鉴。Abstract: The Feixianguan gas reservoir in northeast Sichuan is a high to ultra-high sulfur content reservoir. Based on the analyses of the geology of the Feixianguan formation and the difficulties in drilling fluid operation, a desulfurization measure is presented for field operation with oil based drilling fluids. High performance desulphurizing agents are first selected through laboratory experiment, and studies on the compounding of these agents are conducted to develop a compound desulphurizing agent. Evaluation of the performance of the compound desulphurizing agent to remove sulfur at elevated temperatures shows that the compound desulphurizing agent containing 3%YT-3+3%CLC-2 and 3%JD-2 has percent H2S prevention of 99.14% and percent H2S removal of 100%. The zinc-based desulfurizing agent in the formula reacted with H2S in the drilling fluids to produce insoluble chemical ZnS. The triazine and alcohol ether amide desulfurizing agents mainly remove H2S through fast and irreversible physical and chemical reactions. This desulfurization technology has been successfully applied on the well Po-005-X4 and the well Po-002-H5 when drilled into the high sulfur content Feixianguan formation, no H2S has been detected during drilling and during circulation after tripping for degassing, and the S2− content of the drilling fluid is zero throughout the whole drilling operation. The successful field operation fully demonstrates that the technology has a significant desulfurization performance and can meet the requirements of drilling high sulfur wells.
-
表 1 不同类型除硫剂在油基钻井液中的除硫效果评价
除硫剂 出口达到不同H2S浓度(mg·L−1)对应的时间/min 0 0.0015 0.0030 0.0045 0.0060 0.0075 0.0090 0.0105 0.0120 0.0135 0.0150 空白 3.73 3.78 3.85 3.90 3.95 3.97 4.00 4.07 4.08 4.10 4.13 YT-3 131.70 174.80 210.10 250.40 290.70 320.10 360.40 400.80 435.40 470.20 501.50 JD-2 95.65 110.28 115.85 125.38 138.55 151.80 160.82 172.9 180.08 185.17 190.22 CLC-2 40.12 43.48 45.52 47.67 49.38 50.10 51.20 52.20 53.25 54.27 55.28 CLJ 3.83 4.08 4.25 4.37 4.47 4.55 4.62 4.68 4.75 4.82 4.87 铁基类A 3.93 4.07 4.18 4.27 4.35 4.43 4.52 4.58 4.67 4.75 4.83 锌基类A 4.33 4.40 4.48 4.52 4.53 4.57 4.60 4.62 4.63 4.65 4.67 有机酸锌盐A 4.17 4.23 4.25 4.27 4.28 4.3 4.32 4.33 4.35 4.37 4.38 有机酸锌盐B 5.33 5.83 6.4 7.07 7.3 7.43 7.53 7.62 7.72 7.83 7.95 碳基类A(200目) 5.45 5.79 5.97 6.42 6.68 6.97 7.22 7.50 7.70 7.83 7.92 碳基类A(400目) 5.35 5.50 5.62 5.68 5.73 5.78 5.83 5.87 5.90 5.93 5.97 碳基类A(600目) 3.77 3.80 3.89 3.92 4.02 4.18 4.32 4.40 4.45 4.50 4.55 表 2 油基钻井液中高效除硫剂配方优化实验结果
除硫剂配方 出口达到不同H2S浓度(mg·L−1)对应的时间/min 0 0.0015 0.0030 0.0045 0.0060 0.0075 0.0090 0.0105 0.0120 0.0135 0.0150 空白 1.25 1.30 1.35 1.39 1.43 1.48 1.52 1.55 1.60 1.63 1.65 1%YT-3+1%JD-2 1.90 1.97 2.05 2.10 2.15 2.20 2.25 2.27 2.30 2.33 2.37 2%YT-3+2%JD-2 65.32 80.55 83.48 87.68 90.75 93.24 95.02 96.21 97.45 98.24 99.35 3%YT-3+3%JD-2 74.40 96.40 112.20 120.10 125.30 129.20 132.40 136.10 140.40 146.50 149.50 1%YT-3+1%CLC-2 2.48 2.48 2.49 2.49 2.50 2.50 2.51 2.51 2.52 2.52 2.53 2%YT-3+2%CLC-2 32.33 45.45 55.47 63.61 66.28 70.42 72.54 73.98 74.53 75.17 75.96 3%YT-3+3%CLC-2 57.13 69.50 80.68 91.72 98.03 102.03 105.23 106.38 107.50 108.58 109.65 1%CLC-2+1%JD-2 1.90 1.98 2.02 2.10 2.16 2.23 2.32 2.38 2.43 2.50 2.57 2%CLC-2+2%JD-2 16.20 20.50 23.70 25.90 27.90 28.10 29.10 29.30 30.00 30.30 30.50 3%CLC-2+3%JD-2 37.10 41.70 45.20 47.50 50.20 51.70 52.10 54.10 55.20 56.10 57.50 1%YT-3+1%CLC-2+1%JD-2 9.02 9.50 9.85 10.16 10.33 10.52 10.68 10.82 10.95 11.07 11.20 2%YT-3+2%CLC-2+2%JD-2 127.77 128.24 129.46 130.07 131.15 132.25 133.10 134.12 134.89 135.12 135.58 3%YT-3+3%CLC-2+3%JD-2 344.83 344.95 345.05 345.08 345.22 345.30 345.38 345.46 345.48 345.52 345.55 表 3 高温高压老化抗硫油基钻井液的除硫效果评价
除硫剂/% 污染前硫化氢浓度/(mg·L−1) 预防率/% 污染后硫化氢浓度/(mg·L−1) 清除率/% 空白 0.072 3%YT-3 0.013 82.25 0.012 83.27 5%YT-3 0.004 95.07 0.001 99.10 3%JD-2 0.016 78.02 0.014 80.63 5%JD-2 0.007 90.30 0.005 92.59 3%CLC-2 0.033 54.60 0.027 63.07 5%CLC-2 0.021 70.48 0.014 80.29 3%碳基类A(200目) 0.053 25.73 0.052 27.20 5%碳基类A(200目) 0.039 46.09 0.037 49.27 3%铁基类A 0.059 18.12 0.054 25.00 5%铁基类A 0.044 38.31 0.041 43.65 3%YT-3+3%JD-2 0.001 98.70 0.000 100.00 1%YT-3+3%JD-2 0.007 90.75 0.006 92.00 4%YT-3+2%JD-2 0.001 98.94 0.000 100.00 3%YT-3+3%CLC-2+3%JD-2 0.001 99.14 0.000 100.00 表 4 两口井抗硫油基钻井液应用井段性能情况表
井号 井深/
mρ/
g·cm−3FV/
sFLHTHP/
mLPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sPom ES/
V坡005-X4 3666~3790 1.02~1.03 66~76 2.4~3.0 21~34 4.0~7.5 0.19~0.26 4.0~4.5 215~420 3790~3990 1.10~1.17 64~69 2.6~3.0 22~26 4.0~4.5 0.15~0.18 4.2~4.5 325~468 3990~4254 1.17~1.20 67~69 2.2~2.6 25~26 3.5~4.5 0.14~0.18 4.0~4.8 450~484 4254~4515 1.15~1.16 59~69 2.4~2.6 24~25 3.5~5.0 0.14~0.20 4.0~5.0 436~465 坡002-H5 3878~4177 1.00 53~56 2.7~2.8 12~16 2.5~5.0 0.15~0.41 4.0~4.5 425~466 4177~4525 1.00 54~56 2.4~2.8 15~16 4.0~4.5 0.25~0.30 4.4~4.5 423~435 4525~4753 1.00 54~56 2.6~2.8 15~17 4.0~4.5 0.25~0.27 4.3~4.5 422~431 4752~5010 1.00~1.02 52~56 2.2~2.6 15~18 4.0~4.5 0.25~0.30 4.5~4.6 429~435 表 5 两口井飞仙关组钻井情况表
井号 井段/m 层位 钻井周期/d 机械钻速/(m·h−1) 进尺/m 坡005-X4井 3666~4515 飞三~飞一段 12.0 8.76 849 坡002-H5井 3878~5010 飞三~飞一段 8.9 11.37 1132 表 6 2口井钻进过程中硫化氢含量检测结果
井号 井深/
m层位 ρ/
g·cm−3烃值/
%探头检测H2S浓度/
mg·L−1钻井液S2−浓度/
mg·L−1坡005-X4井 3710 飞三~飞一 1.03 14.41 0 0 3823 飞三~飞一 1.10 18.13 0 0 4050 飞三~飞一 1.18 15.18 0 0 4222 飞三~飞一 1.20 9.16 0 0 4254 飞三~飞一 1.15 10.14 0 0 4450 飞三~飞一 1.16 8.64 0 0 坡002-H5井 4150 飞三~飞一 0.98 23.89 0 0 4296 飞三~飞一 0.99 13.48 0 0 4500 飞三~飞一 1.00 15.77 0 0 4612 飞三~飞一 1.00 18.72 0 0 4792 飞三~飞一 1.00 19.15 0 0 4900 飞三~飞一 1.00 18.84 0 0 表 7 同井场2口井起下钻后效中硫化氢含量检测结果
井号 除硫剂
配比方式井深/
m层位 静止时间/
hρ/
g·cm−3后效烃值最高/
%检测H2S浓度/
mg·L−1坡002-H4井
(第1轮井)2.5%CLJ+0.5%JD-2 5056 飞三~飞一 62.16 1.06 53.15 0 ↑ 0.015 ↑ 0.054 5056 飞三~飞一 39.83 1.05 27.75 0 ↑ 0.015 ↑ 0.056 5056 飞三~飞一 19.00 1.19 57.32 0 ↑ 0.008↑ 0.042 5056 飞三~飞一 5.67 1.06 25.11 0 ↑ 0.005 ↑ 0.011 5030 飞三~飞一 4.98 1.08 64.77 0 ↑ 0.018 坡002-H5井
(第2轮井)3%CLC-2+2%YT-3+3%JD-2 5010 飞三~飞一 19.50 1.02 19.97 0 5010 飞三~飞一 97.10 1.03 26.67 0 5010 飞三~飞一 125.83 1.05 25.53 0 -
[1] 黎洪珍,杨涛,徐春碧,等. 高含硫气井存在的问题及对策探讨[J]. 钻采工艺,2008,31(6):118-121. doi: 10.3969/j.issn.1006-768X.2008.06.037LI Hongzhen, YANG Tao, XU Chunbi, et al. Research on existent problems and processing measures in high sour gas wells[J]. Drilling & Production Technology, 2008, 31(6):118-121. doi: 10.3969/j.issn.1006-768X.2008.06.037 [2] 曾时田. 川渝高含硫气田钻完井主要难点及对策探讨[J]. 钻采工艺,2008,31(1):1-6. doi: 10.3969/j.issn.1006-768X.2008.01.001ZENG Shitian. Main difficulties and countermeasures of drilling and completion in high sour gas field in Chuan-Yu area[J]. Drilling & Production Technology, 2008, 31(1):1-6. doi: 10.3969/j.issn.1006-768X.2008.01.001 [3] 朱光有,戴金星,张水昌,等. 中国含硫化氢天然气的研究及勘探前景[J]. 天然气工业,2004,24(9):1-4. doi: 10.3321/j.issn:1000-0976.2004.09.001ZHU Guangyou, DAI Jinxing, ZHANG Shuichang. Research on sour gas in China and its exploration prospects[J]. Natural Gas Industry, 2004, 24(9):1-4. doi: 10.3321/j.issn:1000-0976.2004.09.001 [4] 肖金裕, 周华安, 暴丹, 等. 川东北高含硫气藏钻井液抗硫工艺优化与应用[J]. 钻井液与完井液, 2023, 40(6): 718-725.XIAO Jinyu, ZHOU Huaan, BAO Dan, et al. Optimization and application of anti-sulfur technology of drilling fluid in high Sulfur gas reservoir in Northeast Sichuan[J]. Drilling Fluid and Completion Fluid, 2023, 40(6):718-725. [5] 李士伦,杜建芬,郭平,等. 对高含硫气田开发的几点建议[J]. 天然气工业,2007,27(2):137-140. doi: 10.3321/j.issn:1000-0976.2007.02.043LI Shilun,DU Jianfen,GUO Ping,et al. Suggestions on high-sulfur gasfield development[J]. Natural Gas Industry, 2007, 27(2):137-140. doi: 10.3321/j.issn:1000-0976.2007.02.043 [6] 赵金洲. 我国高含H2S/CO2气藏安全高效钻采的关键问题[J]. 天然气工业,2007,27(2):141-144. doi: 10.3321/j.issn:1000-0976.2007.02.044ZHAO Jinzhou. Key points on drilling and production safely with high efficiency in high H2S and CO2 gas reservoirs in China[J]. Natural Gas Industry, 2007, 27(2):141-144. doi: 10.3321/j.issn:1000-0976.2007.02.044 [7] 赵忠举,徐同台. 国外钻井液新技术[J]. 钻井液与完井液,2000,17(2):27-29. doi: 10.3969/j.issn.1001-5620.2000.02.009ZHAO Zhongju, XU Tongtai. New drilling fluid technology abroad[J]. Drilling Fluid & Completion Fluid, 2000, 17(2):27-29. doi: 10.3969/j.issn.1001-5620.2000.02.009 [8] 李涛,徐卫强,苏强,等. 四川盆地高温高压含硫气井五级分支井钻完井技术[J]. 石油钻采工艺,2022,44(3):269-275.LI Tao, XU Weiqiang, SU Qiang, et al. Drilling and completion technology for 5-multilateral sulfur-bearing gas wells with high temperature and high pressure in Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(3):269-275. [9] 左京杰,张振华,姚如钢,等. 川南页岩气地层油基钻井液技术难题及案例分析[J]. 钻井液与完井液,2020,37(3):294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, et al. Technical difficulties and case study of oil base drilling fluid operation in shale gas drilling in South Sichuan[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005 [10] 魏昱,白龙,王骁男. 川深1井钻井液关键技术[J]. 钻井液与完井液,2019,36(2):194-201. doi: 10.3969/j.issn.1001-5620.2019.02.011WEI Yu, BAI Long, WANG Xiaonan. Key drilling fluid technology for well Chuanshen-1[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):194-201. doi: 10.3969/j.issn.1001-5620.2019.02.011 [11] 张高波,高秦陇,马倩芸. 提高油基钻井液在页岩气地层抑制防塌性能的措施[J]. 钻井液与完井液,2019,36(2):141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002ZHANG Gaobo, GAO Qinlong, MA Qianyun. Discussion on the enhancement of the inhibitive capacity of oil base drilling fluids in shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002 [12] 王星媛,陆灯云,袁志平. 川西地区油基钻井液井壁强化技术[J]. 石油钻探技术,2021,49(1):34-40. doi: 10.11911/syztjs.2020116WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole strengthening technology with oil-based drilling fluid in the Western Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1):34-40. doi: 10.11911/syztjs.2020116 [13] 杨振周,刘付臣,周春,等. 抗超高温高密度油基钻井液用新型降黏剂的性能[J]. 钻井液与完井液,2018,35(2):35-39. doi: 10.3969/j.issn.1001-5620.2018.02.005YANG Zhenzhou, LIU Fuchen, ZHOU Chun, et al. Study on the performance of new ultra-high temperature high density oil base mud thinners[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):35-39. doi: 10.3969/j.issn.1001-5620.2018.02.005 [14] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液,2019,36(5):555-559. doi: 10.3969/j.issn.1001-5620.2019.05.005WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):555-559. doi: 10.3969/j.issn.1001-5620.2019.05.005 [15] 潘谊党,于培志. 密度对油基钻井液性能的影响[J]. 钻井液与完井液,2019,36(3):273-279. doi: 10.3969/j.issn.1001-5620.2019.03.002PAN Yidang, YU Peizhi. Effect of density on the performance of oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):273-279. doi: 10.3969/j.issn.1001-5620.2019.03.002 [16] 王星媛,欧翔,明显森. 威202H3平台废弃油基钻井液处理技术[J]. 钻井液与完井液,2017,34(2):64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011WANG Xingyuan, OU Xiang, MING Xiansen. Disposing waste oil base drilling fluid from the Wei202H3 platform[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011 [17] 李茂森,刘政,胡嘉. 高密度油基钻井液在长宁—威远区块页岩气水平井中的应用[J]. 天然气勘探与开发,2017,40(1):88-92. doi: 10.12055/gaskk.issn.1673-3177.2017.01.015LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan Bolck[J]. Natural Gas Exploration and Development, 2017, 40(1):88-92. doi: 10.12055/gaskk.issn.1673-3177.2017.01.015 -

计量
- 文章访问数: 346
- HTML全文浏览量: 139
- PDF下载量: 70
- 被引次数: 0