Prediction of Gas Well Productivity Based on Attribution Analysis of Controllable Factors of HEM Water-Based Drilling Fluid to Gas Reservoir Damage
-
摘要: 随着开采程度加深,钻井液造成的储层损害防治要求日益突出,储层保护现已成为气田产能充分释放的关键因素。而深水钻井液体系随井深不断加深,钻井液各性能变化,造成储层损害程度加剧,储层保护性能优化方向不明。因此通过Pearson相关性分析和灰色关联度分析相结合的方式对储层损害进行钻井液可控因素方面的归因分析,确定主控因素,建立气井产能模型。结果表明:钻井液的固相粒径、表面张力、矿化度和高温高压滤失量是钻井液导致储层损害的主控因素。根据归因分析结果,提出了复配不同粒径分布的碳酸钙作为加重剂的优化方法,将钻井液渗透率恢复值提高了12.1%~19.68%。收集了Y8、Y9两口井的现场参数进行了模型适用性验证,结果表明建立的模型准确率达到94%以上。Abstract: As the depth of drilling increases, the prevention and control of reservoir damage caused by drilling fluids has become increasingly prominent, and reservoir protection has become a key factor in the full release of gas field production capacity. As the well depth deepens, the various properties of the deepwater drilling fluid change, causing the degree of reservoir damage to intensify and the direction of reservoir protection performance optimization becomes unclear. Therefore, this paper combines Pearson correlation analysis and grey relational analysis to perform attribution analysis of controllable factors of drilling fluids in reservoir damage, identify the main controlling factors, and establish a gas well productivity model. The results show that the solid particle size, surface tension, mineralization degree, and high-temperature and high-pressure fluid loss of drilling fluids are the main controlling factors causing reservoir damage. According to the attribution analysis results, an optimization method using a composite of different particle size distributions of calcium carbonate as a weighting agent is proposed, which increases the permeability recovery of drilling fluids by 12.1 to 19.68%. The applicability of the model is verified by collecting field parameters from wells Y8 and Y9, and the results show that the accuracy of the model established in this paper is over 94%.
-
表 1 深水钻井液基本性能(1.4 g/cm3,3.5 MPa)
T热滚/℃ 条件 AV/mPa·s PV/mPa·s YP/Pa 动塑比/Pa·(mPa·s)−1 φ6 φ3 pH值 FLAPI/mL FLHTHP/mL 130 老化前 62 44 18 0.4091 8 6 9.4 老化后 60 47 13 0.2766 6 4 9.3 1.2 5.6 140 老化前 74 49 29 0.5102 8 6 9.2 老化后 66 48 22 0.3750 8 5 9.3 1.4 10.0 表 2 天然岩心黏土矿物X射线衍射报告
黏土矿物相对含量/% I/S
(伊蒙混层)I
(伊利石)Kao
(高岭石)C
(绿泥石)S
(蒙脱石)24 59 10 7 / 28 47 15 10 / 30 39 18 13 / 30 33 22 15 / 21 40 22 17 / 表 3 天然岩心初始气测渗透率及工程参数(部分)
岩心编号 K0/mD 污染压差/MPa t污染/min 1 3.83 3.5 120 2 20.45 3.5 120 3 0.29 3.5 120 4 1.86 1.0 125 5 3.72 3.5 150 6 5.07 5.0 175 7 15.10 3.0 240 8 19.27 5.0 240 9 20.64 7.0 240 10 0.09 1.0 125 11 0.14 3.5 150 表 4 不同密度的HEM钻井液的各项性能
ρ/
g·cm−3FLAPI/
mLAV/
mPa·sPV/
mPa·sYP/
Pa动塑比 Gel/
Pa/PaFLHTHP/
mL(150 ℃)pH 线性膨胀
高度/mm油相体积
含量/%固相体积
含量/%固相均径/
μm渗透率恢
复值/%1.40 1.2 60.0.0 47 13.0 0.277 6.0/8.0 5.6 9.4 6.1 5.28 11.81 421.2 79.10 1.45 1.4 66.0 48 22.0 0.375 6.0/8.0 10.0 9.3 6.5 5.21 18.91 430.1 71.25 1.45 1.2 76.0 50 26.0 0.520 6.5/9.0 7.8 9.5 7.2 5.21 18.91 430.1 70.07 1.53 1.2 82.0 67 15.0 0.224 7.5/11.0 6.8 9.4 7.1 5.10 24.52 445.4 81.25 1.53 2.2 83.0 76 7.0 0.090 6.5/12.0 8.4 9.5 6.8 5.10 24.52 445.4 75.98 1.70 1.8 98.0 77 21.0 0.270 13.0/31.0 8.6 9.3 7.0 4.97 24.52 478.9 75.69 1.70 2.2 108.0 87 21.0 0.240 8.0/13.0 10.6 9.4 6.8 4.97 24.52 478.9 81.52 1.90 4.0 136.0 101 35.0 0.347 19.0/32.0 10.6 9.5 6.7 4.36 28.98 498.4 79.68 1.90 8.8 112.0 96 16.0 0.170 13.0/34.0 9.6 9.6 7.0 4.36 28.98 498.4 83.56 2.00 3.8 142.5 107 35.5 0.332 11.0/20.0 14.4 9.5 7.2 4.26 31.25 542.6 68.98 2.00 6.4 93.5 87 6.5 0.070 6.0/11.5 14.7 9.5 7.1 4.26 31.25 542.6 70.65 表 5 不同渗透率天然岩心的参数
井深/
m气测渗透率/
10−3μm2孔隙度/
%直径/
cm长度/
cm3041.33 1.74 17.9 2.502 5.101 3133.28 17.76 17.2 2.456 4.618 4168.37 0.27 9.1 2.498 5.802 表 6 优化前后深水钻井液的储层保护性能
渗透率
级别岩心质量增加/g 渗透率恢复值/% 渗透率
恢复值
增加/%优化前 优化后 优化前 优化后 优化后 中渗 0.2399 0.1375 79.1 91.20 12.10 高渗 0.3399 0.1780 71.25 87.52 16.27 低渗 0.2899 0.1180 70.07 89.75 19.68 表 7 Y8和Y9井的生产数据和所用钻井液的性能参数
生产数据
参数标况下产气量/
m3·d−1实际气体
偏差系数Z实际气层
温度/℃外边界压力/
MPa井底流压/
MPa供给半径
${r}_{{\rm{e}}}$/m井筒半径
${r}_{{\rm{w}}}$/m气体黏度/
mPa·s储层厚度h/
mK0/
mDY8 507684 1.183 84.83 29.485 29.473 500 0.24 0.0187 107.2 1.74 Y9 14014 1.162 89.42 28.698 28.352 500 0.34 0.031 107.2 0.27 表 8 YL8-3-1和YL8-3-2井的所用钻井液的性能参数
污染压差/
MPaσ/
mN·m−1AV/
mPa·sVs/
%FLHTHP/
mL线性膨胀
高度/mmpH 固相均径/
μmt污染/
dYP/
Pa油相体积
含量/%PV/
mPa·sρ/
g·cm−3矿化度/
g·L−1Y8 0.88 41.24 29 18.91 5.60 7 9.5 135 0.125 0.2766 5.2 17 1.09 11.412 Y9 0.88 41.24 41 18.91 5.60 7 9.5 135 0.125 0.2766 5.2 25 1.06 11.412 -
[1] ZAMORA M, BROUSSARD P N, STEPHENS M P. The top 10 mudrelated concerns in deepwater drilling operations[C]//SPE International Petroleum Conference and Exhibition in Mexico. Villahermosa, Mexico, 2000: SPE-59019-MS. [2] DAVISON J M, SAASEN S C, ALLOUCHE S M, er al. Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[C]//SPE Annual Technical Conference and Exhibition. Houston, Texa, 199: SPE-56632-MS. [3] 谢彬,曾恒一. 我国海洋深水油气田开发工程技术研究进展[J]. 中国海上油气,2021,33(1):166-176.XIE Bin, ZENG Hengyi. Research advancement in offshore deepwater oil and gas development engineering technologies in China[J]. China Offshore Oil and Gas, 2021, 33(1):166-176. [4] 李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液,2015,32(6):85-88.LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deep water drilling fluids in china and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):85-88. [5] LI Y, CAO D Y, MENG S Z, et al. Permeability and elastic parameters under different pressures of tight gas sandstones in eastern Ordos basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 35, Part A: 362-371. [6] YANG X, MENG Y F, SHI X C, et al. Influence of porosity and permeability heterogeneity on liquid invasion in tight gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 37:169-177. doi: 10.1016/j.jngse.2016.11.046 [7] BAHRAMI H, REZAEE R Z, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88/89:100-106. doi: 10.1016/j.petrol.2012.04.002 [8] 杨楷乐,向耀权,彭小东. 南海深水区气井产能评价新方法[J]. 天然气技术与经济,2022,16(4):24-30.YANG Kaile, XIANG Yaoquan, PENG Xiaodong. A new method to predict the productivity of gas wells in deepwaters ofthe South China Sea[J]. Natural Gas Technology and Economy, 2022, 16(4):24-30. [9] 吴满祥,刘伟,牟杨琼杰,等. 无土相油基钻井液的研究与应用[J]. 钻井液与完井液,2014,31(6):21-23,96.WU Manxiang, LIU Wei, MO Yangqiongjie, et al. Study on and application of clay-free oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(6):21-23,96. [10] 罗健生,李自立,李怀科,等. HEM深水聚胺钻井液体系研究与应用[J]. 钻井液与完井液,2014,31(1):20-23,96.LUO Jiansheng, LI Zili, LI Huaike, et al. Research and application of HEM poly-amine drilling fluids used in deep water operation[J]. Drilling Fluid & Completion Fluid, 2014, 31(1):20-23,96. [11] 罗健生,耿铁,李自立,等. 快吸附强抑制性HEM钻井液[J]. 钻井液与完井液,2011,28(2):19-23,96.LUO Jiansheng, GENG Tie, LI Zili, et al. Research on fast absorb and high inhibitive drilling fluid HEM[J]. Drilling Fluid & Completion Fluid, 2011, 28(2):19-23,96. [12] JOHNSON W D. Nonparametric statistical inference[J]. Technometrics, 1973, 15(2):421. [13] FISHER R A, BENNETT J H, YATES F. Statistical methods, experimental design and scientific inference[M]. Oxford: Oxford University Press, 1990. [14] FISHER R. On the ”probable error” of a coefficient of correlation deduced from a small sample[J]. Metron, 1920, 1. [15] FIELLER E C, PEARSON E S. Tests for rank correlation coefficients. II[J]. Biometrika, 1961, 48(1/2):29-40. doi: 10.2307/2333127 [16] JU-LONG D. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5):288-294. [17] 王清华. 改进的灰色模型在储层敏感性预测中的应用[J]. 钻井液与完井液,2008,25(4):31-33.WANG Qinghua. The Application of the modified grey model in forecasting the sensitivity of reservoirs[J]. Drilling Fluid & Completion Fluid, 2008, 25(4):31-33. [18] 朱德武. 用灰色关联分析法评选造浆黏土[J]. 钻井液与完井液,1993,10(1):9-12.ZHU Dewu. Evaluating mud making clay by gray relative analysis method[J]. Drilling Fluid & Completion Fluid, 1993, 10(1):9-12. -