留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深水钻井液可控因素对气藏损害归因分析形成的气井产能预测

廖高龙 梁豪 马双政 张耀元 申远 南源 王冠翔 贺垠博

廖高龙,梁豪,马双政,等. 深水钻井液可控因素对气藏损害归因分析形成的气井产能预测[J]. 钻井液与完井液,2024,41(3):330-336 doi: 10.12358/j.issn.1001-5620.2024.03.007
引用本文: 廖高龙,梁豪,马双政,等. 深水钻井液可控因素对气藏损害归因分析形成的气井产能预测[J]. 钻井液与完井液,2024,41(3):330-336 doi: 10.12358/j.issn.1001-5620.2024.03.007
LIAO Gaolong, LIANG Hao, MA Shuangzheng, et al.Prediction of gas well productivity based on attribution analysis of controllable factors of hem water-based drilling fluid to gas reservoir damage[J]. Drilling Fluid & Completion Fluid,2024, 41(3):330-336 doi: 10.12358/j.issn.1001-5620.2024.03.007
Citation: LIAO Gaolong, LIANG Hao, MA Shuangzheng, et al.Prediction of gas well productivity based on attribution analysis of controllable factors of hem water-based drilling fluid to gas reservoir damage[J]. Drilling Fluid & Completion Fluid,2024, 41(3):330-336 doi: 10.12358/j.issn.1001-5620.2024.03.007

深水钻井液可控因素对气藏损害归因分析形成的气井产能预测

doi: 10.12358/j.issn.1001-5620.2024.03.007
基金项目: 国家自然科学基金青年科学基金项目“智能钻井液聚合物处理剂刺激响应机理与分子结构设计方法研究”(52004297)。
详细信息
    作者简介:

    廖高龙,男,现在主要从事地质作业管理及技术研究工作。E-mail:liaog12@cnooc.com.cn。

    通讯作者:

    马双政,研究方向为钻完井液储层保护研究。E-mail:mashzh2@cnooc.com.cn。

  • 中图分类号: TE 258

Prediction of Gas Well Productivity Based on Attribution Analysis of Controllable Factors of HEM Water-Based Drilling Fluid to Gas Reservoir Damage

  • 摘要: 随着开采程度加深,钻井液造成的储层损害防治要求日益突出,储层保护现已成为气田产能充分释放的关键因素。而深水钻井液体系随井深不断加深,钻井液各性能变化,造成储层损害程度加剧,储层保护性能优化方向不明。因此通过Pearson相关性分析和灰色关联度分析相结合的方式对储层损害进行钻井液可控因素方面的归因分析,确定主控因素,建立气井产能模型。结果表明:钻井液的固相粒径、表面张力、矿化度和高温高压滤失量是钻井液导致储层损害的主控因素。根据归因分析结果,提出了复配不同粒径分布的碳酸钙作为加重剂的优化方法,将钻井液渗透率恢复值提高了12.1%~19.68%。收集了Y8、Y9两口井的现场参数进行了模型适用性验证,结果表明建立的模型准确率达到94%以上。

     

  • 图  1  深水区储层孔喉特征

    图  2  Pearson相关分析结果

    图  3  钻井液可控因素灰色关联度排序

    图  4  含水饱和度和岩心渗透率恢复值关系

    图  5  不同粒径的CaCO3的粒度分布

    图  6  优化前后HEM钻井液储层保护性能对比

    表  1  深水钻井液基本性能(1.4 g/cm3,3.5 MPa)

    T热滚/℃条件AV/mPa·sPV/mPa·sYP/Pa动塑比/Pa·(mPa·s)−1φ6φ3pH值FLAPI/mLFLHTHP/mL
    130老化前6244180.4091869.4
    老化后6047130.2766649.31.25.6
    140老化前7449290.5102869.2
    老化后6648220.3750859.31.410.0
    下载: 导出CSV

    表  2  天然岩心黏土矿物X射线衍射报告

    黏土矿物相对含量/%
    I/S
    (伊蒙混层)
    I
    (伊利石)
    Kao
    (高岭石)
    C
    (绿泥石)
    S
    (蒙脱石)
    2459107/
    28471510/
    30391813/
    30332215/
    21402217/
    下载: 导出CSV

    表  3  天然岩心初始气测渗透率及工程参数(部分)

    岩心编号K0/mD污染压差/MPat污染/min
    13.833.5120
    220.453.5120
    30.293.5120
    41.861.0125
    53.723.5150
    65.075.0175
    715.103.0240
    819.275.0240
    920.647.0240
    100.091.0125
    110.143.5150
    下载: 导出CSV

    表  4  不同密度的HEM钻井液的各项性能

    ρ/
    g·cm−3
    FLAPI/
    mL
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    动塑比Gel/
    Pa/Pa
    FLHTHP/
    mL(150 ℃)
    pH线性膨胀
    高度/mm
    油相体积
    含量/%
    固相体积
    含量/%
    固相均径/
    μm
    渗透率恢
    复值/%
    1.401.260.0.04713.00.2776.0/8.05.69.46.15.2811.81421.279.10
    1.451.466.04822.00.3756.0/8.010.09.36.55.2118.91430.171.25
    1.451.276.05026.00.5206.5/9.07.89.57.25.2118.91430.170.07
    1.531.282.06715.00.2247.5/11.06.89.47.15.1024.52445.481.25
    1.532.283.0767.00.0906.5/12.08.49.56.85.1024.52445.475.98
    1.701.898.07721.00.27013.0/31.08.69.37.04.9724.52478.975.69
    1.702.2108.08721.00.2408.0/13.010.69.46.84.9724.52478.981.52
    1.904.0136.010135.00.34719.0/32.010.69.56.74.3628.98498.479.68
    1.908.8112.09616.00.17013.0/34.09.69.67.04.3628.98498.483.56
    2.003.8142.510735.50.33211.0/20.014.49.57.24.2631.25542.668.98
    2.006.493.5876.50.0706.0/11.514.79.57.14.2631.25542.670.65
    下载: 导出CSV

    表  5  不同渗透率天然岩心的参数

    井深/
    m
    气测渗透率/
    10−3μm2
    孔隙度/
    %
    直径/
    cm
    长度/
    cm
    3041.331.7417.92.5025.101
    3133.2817.7617.22.4564.618
    4168.370.279.12.4985.802
    下载: 导出CSV

    表  6  优化前后深水钻井液的储层保护性能

    渗透率
    级别
    岩心质量增加/g渗透率恢复值/%渗透率
    恢复值
    增加/%
    优化前优化后优化前优化后优化后
    中渗0.23990.137579.191.2012.10
    高渗0.33990.178071.2587.5216.27
    低渗0.28990.118070.0789.7519.68
    下载: 导出CSV

    表  7  Y8和Y9井的生产数据和所用钻井液的性能参数

    生产数据
    参数
    标况下产气量/
    m3·d−1
    实际气体
    偏差系数Z
    实际气层
    温度/℃
    外边界压力/
    MPa
    井底流压/
    MPa
    供给半径
    ${r}_{{\rm{e}}}$/m
    井筒半径
    ${r}_{{\rm{w}}}$/m
    气体黏度/
    mPa·s
    储层厚度h/
    m
    K0/
    mD
    Y85076841.18384.8329.48529.4735000.240.0187107.21.74
    Y9140141.16289.4228.69828.3525000.340.031107.20.27
    下载: 导出CSV

    表  8  YL8-3-1和YL8-3-2井的所用钻井液的性能参数

    污染压差/
    MPa
    σ/
    mN·m−1
    AV/
    mPa·s
    Vs/
    %
    FLHTHP/
    mL
    线性膨胀
    高度/mm
    pH固相均径/
    μm
    t污染/
    d
    YP/
    Pa
    油相体积
    含量/%
    PV/
    mPa·s
    ρ/
    g·cm−3
    矿化度/
    g·L−1
    Y80.8841.242918.915.6079.51350.1250.27665.2171.0911.412
    Y90.8841.244118.915.6079.51350.1250.27665.2251.0611.412
    下载: 导出CSV
  • [1] ZAMORA M, BROUSSARD P N, STEPHENS M P. The top 10 mudrelated concerns in deepwater drilling operations[C]//SPE International Petroleum Conference and Exhibition in Mexico. Villahermosa, Mexico, 2000: SPE-59019-MS.
    [2] DAVISON J M, SAASEN S C, ALLOUCHE S M, er al. Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[C]//SPE Annual Technical Conference and Exhibition. Houston, Texa, 199: SPE-56632-MS.
    [3] 谢彬,曾恒一. 我国海洋深水油气田开发工程技术研究进展[J]. 中国海上油气,2021,33(1):166-176.

    XIE Bin, ZENG Hengyi. Research advancement in offshore deepwater oil and gas development engineering technologies in China[J]. China Offshore Oil and Gas, 2021, 33(1):166-176.
    [4] 李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液,2015,32(6):85-88.

    LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deep water drilling fluids in china and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):85-88.
    [5] LI Y, CAO D Y, MENG S Z, et al. Permeability and elastic parameters under different pressures of tight gas sandstones in eastern Ordos basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 35, Part A: 362-371.
    [6] YANG X, MENG Y F, SHI X C, et al. Influence of porosity and permeability heterogeneity on liquid invasion in tight gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 37:169-177. doi: 10.1016/j.jngse.2016.11.046
    [7] BAHRAMI H, REZAEE R Z, CLENNELL B. Water blocking damage in hydraulically fractured tight sand gas reservoirs: an example from Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2012, 88/89:100-106. doi: 10.1016/j.petrol.2012.04.002
    [8] 杨楷乐,向耀权,彭小东. 南海深水区气井产能评价新方法[J]. 天然气技术与经济,2022,16(4):24-30.

    YANG Kaile, XIANG Yaoquan, PENG Xiaodong. A new method to predict the productivity of gas wells in deepwaters ofthe South China Sea[J]. Natural Gas Technology and Economy, 2022, 16(4):24-30.
    [9] 吴满祥,刘伟,牟杨琼杰,等. 无土相油基钻井液的研究与应用[J]. 钻井液与完井液,2014,31(6):21-23,96.

    WU Manxiang, LIU Wei, MO Yangqiongjie, et al. Study on and application of clay-free oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(6):21-23,96.
    [10] 罗健生,李自立,李怀科,等. HEM深水聚胺钻井液体系研究与应用[J]. 钻井液与完井液,2014,31(1):20-23,96.

    LUO Jiansheng, LI Zili, LI Huaike, et al. Research and application of HEM poly-amine drilling fluids used in deep water operation[J]. Drilling Fluid & Completion Fluid, 2014, 31(1):20-23,96.
    [11] 罗健生,耿铁,李自立,等. 快吸附强抑制性HEM钻井液[J]. 钻井液与完井液,2011,28(2):19-23,96.

    LUO Jiansheng, GENG Tie, LI Zili, et al. Research on fast absorb and high inhibitive drilling fluid HEM[J]. Drilling Fluid & Completion Fluid, 2011, 28(2):19-23,96.
    [12] JOHNSON W D. Nonparametric statistical inference[J]. Technometrics, 1973, 15(2):421.
    [13] FISHER R A, BENNETT J H, YATES F. Statistical methods, experimental design and scientific inference[M]. Oxford: Oxford University Press, 1990.
    [14] FISHER R. On the ”probable error” of a coefficient of correlation deduced from a small sample[J]. Metron, 1920, 1.
    [15] FIELLER E C, PEARSON E S. Tests for rank correlation coefficients. II[J]. Biometrika, 1961, 48(1/2):29-40. doi: 10.2307/2333127
    [16] JU-LONG D. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5):288-294.
    [17] 王清华. 改进的灰色模型在储层敏感性预测中的应用[J]. 钻井液与完井液,2008,25(4):31-33.

    WANG Qinghua. The Application of the modified grey model in forecasting the sensitivity of reservoirs[J]. Drilling Fluid & Completion Fluid, 2008, 25(4):31-33.
    [18] 朱德武. 用灰色关联分析法评选造浆黏土[J]. 钻井液与完井液,1993,10(1):9-12.

    ZHU Dewu. Evaluating mud making clay by gray relative analysis method[J]. Drilling Fluid & Completion Fluid, 1993, 10(1):9-12.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  84
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-02-13
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回