留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤中凹陷裂缝性致密储层钻开液伤害研究

张宇飞 王超群 徐博韬 苗海龙 罗程 苏俊霖

张宇飞,王超群,徐博韬,等. 渤中凹陷裂缝性致密储层钻开液伤害研究[J]. 钻井液与完井液,2024,41(3):325-329 doi: 10.12358/j.issn.1001-5620.2024.03.006
引用本文: 张宇飞,王超群,徐博韬,等. 渤中凹陷裂缝性致密储层钻开液伤害研究[J]. 钻井液与完井液,2024,41(3):325-329 doi: 10.12358/j.issn.1001-5620.2024.03.006
ZHANG Yufei, WANG Chaoqun, XU Botao, et al.Study on damage by drilling fluid of fractured tighten reservoirs in Bozhong sag[J]. Drilling Fluid & Completion Fluid,2024, 41(3):325-329 doi: 10.12358/j.issn.1001-5620.2024.03.006
Citation: ZHANG Yufei, WANG Chaoqun, XU Botao, et al.Study on damage by drilling fluid of fractured tighten reservoirs in Bozhong sag[J]. Drilling Fluid & Completion Fluid,2024, 41(3):325-329 doi: 10.12358/j.issn.1001-5620.2024.03.006

渤中凹陷裂缝性致密储层钻开液伤害研究

doi: 10.12358/j.issn.1001-5620.2024.03.006
基金项目: 中海油田服务股份有限公司重点科研项目“海上中深层低渗/裂缝储层伤害评价方法研究及应用”(YHB22YF006)。
详细信息
    作者简介:

    张宇飞,硕士研究生,工程师,主要研究方向为钻完井液体系研发及储层保护,E-mail:zhangyf81@cnooc.com.cn

    通讯作者:

    苏俊霖,博士,教授,E-mail:sjlzr2006@163.com

  • 中图分类号: TE 254.3

Study on Damage by Drilling Fluid of Fractured Tighten Reservoirs in Bozhong Sag

  • 摘要: 储层伤害程度的评价对储层保护以及提高油气产率具有重要意义。位于渤海湾盆地的渤中凹陷地区储层属于裂缝性致密储层,取心困难且缺乏合适统一的伤害评价方法,导致储层保护难度较大。为此,结合储层的现场实际情况,设计制作了内部透明可视的3D打印裂缝岩心及相应的储层伤害评价装置,使用流量损害率评价法代替渗透率损害率评价法对渤中凹陷地区储层钻开液伤害进行研究。实验结果表明,现场在用EZFLOW钻开液体系流变性能稳定,滤失性能良好;EZFLOW钻开液对储层的伤害程度小于3%膨润土浆对储层的伤害程度,对岩心的伤害率在11.7%~26.2%之间,属于弱伤害程度;岩心的伤害率具有随岩心开度升高而降低的特点;对于不同规格的裂缝岩心而言,岩心越长,裂缝越宽,伤害率就会越大。

     

  • 图  1  渤中凹陷区块裂缝开度分布图

    图  2  裂缝彩色渲染四视图

    图  3  岩心构建流程

    图  4  3D打印可视岩心成品

    图  5  被EZFLOW钻开液体系伤害后清水驱替前后的对比

    表  1  储层伤害程度评价标准

    DQ/%储层损害程度DQ/%储层损害程度
    ${D}_{{\rm{Q}}}$≤550<${D}_{{\rm{Q}}}$≤70中等偏强
    5<${D}_{{\rm{Q}}}$≤30${D}_{{\rm{Q}}}$>70
    30<${D}_{{\rm{Q}}}$≤50中等偏弱
    下载: 导出CSV

    表  2  EZFLOW钻开液常规性能测定

    老化
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    动塑
    滤失量/mL泥饼厚度/
    mm
    APIHTHP
    37.018.518.91.022.00.3
    135 ℃、16 h37.519.020.41.071.96.60.3/0.8
    下载: 导出CSV

    表  3  50 µm裂缝开度钻开液伤害率测实验结果

    P驱替/
    MPa
    驱替
    方式
    Qo/
    mL·min-1
    驱替
    方式
    Qd/
    mL·min-1
    伤害率
    DQ/%
    3清水
    反向
    2.71伤害后
    清水反向
    2.0325.1
    3清水
    反向
    2.66伤害后
    清水反向
    2.0522.9
    3清水
    反向
    2.75伤害后
    清水反向
    2.0326.2
    3清水
    反向
    2.80伤害后
    清水反向
    2.1124.6
    3清水
    反向
    2.69伤害后
    清水反向
    1.9926.0
    下载: 导出CSV

    表  4  100 µm裂缝开度钻开液伤害率测实验结果

    P 驱替/
    MPa
    驱替
    方式
    Qo/
    mL·min−1
    驱替
    方式
    Qd/
    mL·min−1
    伤害率
    DQ/%
    3清水
    反向
    4.39伤害后
    清水反向
    3.6018.0
    3清水
    反向
    4.28伤害后
    清水反向
    3.5118.0
    3清水
    反向
    4.26伤害后
    清水反向
    3.5716.2
    3清水
    反向
    4.31伤害后
    清水反向
    3.6615.1
    3清水
    反向
    4.40伤害后
    清水反向
    3.7015.9
    下载: 导出CSV

    表  5  150 µm裂缝开度钻开液伤害率测实验结果

    P 驱替/
    MPa
    驱替
    方式
    Qo/
    mL·min-1
    驱替
    方式
    Qd/
    mL·min-1
    伤害率
    DQ/%
    3清水
    反向
    5.40伤害后
    清水反向
    4.6813.3
    3清水
    反向
    5.33伤害后
    清水反向
    4.6812.2
    3清水
    反向
    5.32伤害后
    清水反向
    4.6013.5
    3清水
    反向
    5.51伤害后
    清水反向
    4.7713.4
    3清水
    反向
    5.45伤害后
    清水反向
    4.8111.7
    下载: 导出CSV

    表  6  在3 MPa驱替压力下不同规格岩心的伤害率

    驱替
    方式
    Qo/
    mL·min-1
    驱替
    方式
    Qd/
    mL·min-1
    伤害
    率/%
    清水反向
    (Φ2.5×10 cm)
    4.553%膨润土浆伤
    害后清水反向
    3.3925.5
    清水反向
    (Φ2.5×10 cm)
    4.40EZFLOW体系伤
    害后清水反向
    3.7514.8
    清水反向
    (Φ3.8×30 cm)
    7.50EZFLOW体系伤
    害后清水反向
    4.6038.7
      注:驱替压力为3 MPa。
    下载: 导出CSV
  • [1] 刘敬寿,丁文龙,肖子亢,等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展,2019,34(6):2283-2300.

    LIU Jingshou, DING Wenlong, XIAO Zikang, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6):2283-2300.
    [2] 赵国祥,王清斌,杨波,等. 渤中凹陷奥陶系深埋环境下碳酸盐岩溶蚀成因分析[J]. 天然气地球科学,2016,27(1):111-120.

    ZHAO Guoxiang, WANG Qingbin, YANG Bo, et al. Dissolution mechanism analysis of Ordovician carbonates under burial environment of Bozhong Sag, Bohai Sea area[J]. Natural Gas Geoscience, 2016, 27(1):111-120.
    [3] 罗平亚,康毅力,孟英峰. 我国储层保护技术实现跨越式发展[J]. 天然气工业,2006,26(1):84-87.

    LUO Pingya, KANG Yili, MENG Yingfeng. China's reservoir protection technologies develop in leaps[J]. Natural Gas Industry, 2006, 26(1):84-87.
    [4] 刘大伟,康毅力,刘静,等. 钻井液完井液屏蔽环重复形成的实验模拟[J]. 钻井液与完井液,2005,22(6):26-29.

    LIU Dawei, KANG Yili, LIU Jing, et al. Experimental simulation on shield ring formation repeatedly by drilling fluid & completion fluid[J]. Drilling Fluid & Completion Fluid, 2005, 22(6):26-29.
    [5] 陈仕仪,康毅力,马旭川. 屏蔽暂堵技术在川东新探区的应用[J]. 钻采工艺,2005,28(6):99-101.

    CHEN Shiyi, KANG Yili, MA Xuchuan. Application of the screen bridging technology on the new drilling area[J]. Drilling & Production Technology, 2005, 28(6):99-101.
    [6] 何健,康毅力,刘大伟,等. 川渝地区碳酸盐岩气层钻井碱敏性实验研究[J]. 天然气工业,2005,25(8):60-61.

    HE Jian, KANG Yili, LIU Dawei, et al. Experimental research on drilling alkali sensitivity of carbonate gas reservoirs in Sichuan-Chongqing region[J]. Natural Gas Industry, 2005, 25(8):60-61.
    [7] 刘静,康毅力,陈锐,等. 碳酸盐岩储层损害机理及保护技术研究现状与发展趋势[J]. 油气地质与采收率,2006,13(1):99-101.

    LIU Jing, KANG Yili, CHEN Rui, et al. Present research situation and developing trend of formation damage mechanism and protection technology for carbonate rocks[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(1):99-101.
    [8] SY/T 6285-2011. 油气储层评价方法[S]. 北京: 石油工业出版社, 2011.

    SY/T 6285-2011. Evaluating methods of oil and gas reservoirs[S]. Beijing: Petroleum Industry Press, 2011.
    [9] 郭万江,付帅师,李爱芬,等. 缝洞型油藏物理实验模型制作新方法[J]. 科学技术与工程,2021,21(23):9830-9836.

    GUO Wanjiang, FU Shuaishi, LI Aifen, et al. A new method for manufacturing physical experimental models of fracture-cavity reservoir[J]. Science Technology and Engineering, 2021, 21(23):9830-9836.
    [10] 潘永强. 大庆裂缝性储层损害机理及评价技术研究[D]. 大庆: 大庆石油学院, 2009.

    PAN Yongqiang. Damage mechanism and evaluation of fractured reservoir of Daging[D]. Daqing: Daqing Petroleum Institute, 2009.
    [11] 梅丹,胡勇,王倩. 裂缝对气藏储层渗透率及气井产能的贡献[J]. 石油实验地质,2019,41(5):769-772.

    MEI Dan, HU Yong, WANG Qian. Experimental study on fracture contribution to gas reservoir permeability and well capacity[J]. Petroleum Geology and Experiment, 2019, 41(5):769-772.
    [12] GB/T 28912-2012. 岩石中两相流体相对渗透率测定方法[S]. 北京: 中国标准出版社, 2013.

    GB/T 28912-2012. Test method for two phase relative permeability in rock[S]. Beijing: China Standard Press, 2013.
    [13] 郑力会,刘皓,曾浩,等. 流量替代渗透率评价破碎性储层工作流体伤害程度[J]. 天然气工业,2019,39(12):74-80. doi: 10.3787/j.issn.1000-0976.2019.12.009

    ZHENG Lihui, LIU Hao, ZENG Hao, et al. Evaluation of working fluid damage in fractured reservoirs using flow rate instead of permeability[J]. Natural Gas Industry, 2019, 39(12):74-80. doi: 10.3787/j.issn.1000-0976.2019.12.009
    [14] SY/T 5358-2010. 储层敏感性流动实验评价方法[S]. 北京: 石油工业出版社, 2010.

    SY/T 5358-2010. Experimental evaluation method of reservoir sensitivity flow[S]. Beijing: Petroleum Industry Press, 2010.
    [15] 苏徐航,齐宁,王一伟,等. 缝洞型油藏雾化酸深部酸化机理研究[J]. 钻井液与完井液,2019,36(6):771-776.

    SU Xuhang, QI Ning, WANG Yiwei, et al. Study on the mechanisms of in-depth acid job of atomized acids in fractured and vuggy reservoirs[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):771-776.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  99
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-01-29
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回