An Ultra-High Temperature Coordinate Bond Oligomer Thinner
-
摘要: 针对高密度水基钻井液高温增稠引发的滤失量大、ECD与内耗高、流动性下降甚至完全丧失难题,在AA-AMPS聚有机酸降黏剂分子中引入富含大量邻苯二酚基团的单宁酸,采用自由基聚合法研制了一种抗超高温配位键合型低聚物降黏剂AA-AMPS-TA,并通过正交实验明确了PAAT的最优合成条件。表征并评价了PAAT的降黏性能,结果表明:引入TA后,PAAT的红外光谱出现了源于酚羟基的分子内氢键吸收峰,且因其分子结构中引入了大量苯酚基团,显著提升了热稳定性,分解温度接近500 ℃;PAAT可降低低浓度膨润土浆和7%膨润土+8%高岭土的高浓度混合黏土浆黏度,在高密度水基钻井液体系中降黏率达26.5%,240 ℃热滚后降黏率达44.4%。采用Zeta电位与粒径分析验证了PAAT的吸附降黏机理,并在蓬深101井中现场应用,控制了井浆高温下黏度、切力增涨,降黏效果良好。Abstract: An ultra-high temperature coordinate bonding oligomer thinner AA-AMPS-TA (named PAAT) is synthesized as a way of dealing with the problems encountered in using high density water-based drilling fluids at elevated temperatures. These problems involve high filtration rate, high ECD and internal friction, poor mobility or even complete loss of the mobility of the drilling fluids. The thinner PAAT is synthesized through radical polymerization by introducing the molecules of tanning acids (TA) which are rich in catechol groups into the poly organic acid thinner AA-AMPS. The optimal synthesis condition of the thinner PAAT is determined through orthogonal experiment, and the thinning performance of the thinner is evaluated. The evaluation results show that after introducing TA into the molecules of the AA-AMPS, the IR spectrum of the product PAAT shows an intra-molecule hydrogen bond absorption peak, and the thermal stability of the PAAT molecules is greatly improved because of the introduction of large number of phenol groups; the decomposition temperature of the PAAT molecules is close to 500 ℃. PAAT has the ability to reduce the viscosity of low-concentration bentonite slurry and high clay concentration slurry such as one formulated with 7% bentonite and 8% kaolinite. Using PAAT, the viscosity of a high density water-based drilling fluid can be reduced by 26.5%, and after hot-rolling the water-based drilling fluid at 240 ℃, its viscosity can be reduced by 44.4%. The PAAT thinner reduces viscosity by molecule adsorption, as is verified by Zeta-potential measurement and particle size analysis. This thinner has been used in drilling the well Pengshen-101, and the viscosity and gel strengths of the drilling fluid were both satisfactorily under control at elevated temperatures.
-
表 1 PAAT合成的正交实验结果
样品 AA∶AMPS
(物质的量比)(AA+AMPS)∶TA
(质量比)T反应/
℃引发
剂/%降黏
率/%1# 1∶9 5∶1 60 0.1 25 2# 1∶9 7∶1 70 0.2 35 3# 1∶9 9∶1 80 0.3 48 4# 19∶18 5∶1 60 0.1 37 5# 19∶18 7∶1 70 0.2 50 6# 19∶18 9∶1 80 0.3 43 7# 2∶1 5∶1 60 0.1 38 8# 2∶1 7∶1 70 0.2 48 9# 2∶1 9∶1 80 0.3 45 K1/% 36.0 33.3 38.7 40.0 K2/% 43.3 44.3 39.0 38.7 K3/% 43.7 45.3 45.3 44.3 R 7.7 12.0 6.6 5.6 注:K1、K2、K3为均值,R为极差。 表 2 1%PAAT对高浓度混合土浆热滚前后流变性的影响
热滚
条件AV/
mPa·sPV/
mPa·sYP/
Paφ100 降黏
率/%热滚前 41 22 19.42 28 15 11 4.09 9 67.8 240 ℃、16 h 44 24 20.44 35 21 16 5.11 12 65.7 表 3 不同降黏剂在高密度水基钻井液中的降黏性能
热滚
条件配方 AV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 φ100 降黏
率/%热滚前 空白组 91.0 72 19.42 10/9 49 +1%PAAT 77.5 63 14.82 6/5 36 26.5 +1%XY-27 79.0 66 13.29 6/5 38 22.4 +1%SMS-19 85.5 70 15.84 8/6 44 10.2 240 ℃、16 h 空白组 125 89 36.79 16/14 81 +1%PAAT 90 67 23.51 9/8 45 44.4 +1%XY-27 131 102 29.64 19/17 88 -8.6 +1%SMS-19 >150 39/31 121 -37.0 表 4 PAA与PAAT对膨润土Zeta电位及粒径的影响 (240 ℃、16 h)
样品 ζ/mV 中径/μm 平均径/μm D10/μm D90/μm 基浆 −43.6 8.113 32.792 2.495 121.114 基浆+PAAT −59.1 6.955 14.306 1.002 36.057 基浆+PAA −55.6 7.904 14.929 1.754 40.587 表 5 蓬深101井井浆维护前后性能变化
测试
条件配方 AV/
mPa·sPV/
mPa·sYP/
Paφ6/
φ3降黏
率/%FLHTHP/
mL热滚前 原始井浆 49.0 39 10.2 3/2 兑入胶液 39.6 32 7.6 3/2 17.2 240 ℃、16 h 原始井浆 118.0 93 25.0 15/11 38.0 兑入胶液 54.8 41 13.8 5/4 48.2 14.2 -
[1] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005 [2] 何登发,贾承造,赵文智,等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172. [3] 庞少聪,安玉秀,马京缘. 近十年国内钻井液降黏剂研究进展[J]. 钻探工程,2022,49(1):96-103.PANG Shaocong, AN Yuxiu, MA Jingyuan. Research progress of domestic drilling fluid viscosity reducer in recent ten years[J]. Drilling Engineering, 2022, 49(1):96-103. [4] 王飞龙,杨泽星,刘泽,等. 钻井液降黏剂SSMA的本体聚合制备与性能[J]. 钻井液与完井液,2017,34(6):8-12,17. doi: 10.3969/j.issn.1001-5620.2017.06.002WANG Feilong, YANG Zexing, LIU Ze, et al. Study on the performance of SSMA-A thinner made through mass polymerization[J]. Drilling Fluid & Completion Fluid, 2017, 34(6):8-12,17. doi: 10.3969/j.issn.1001-5620.2017.06.002 [5] 刘立新,杜俊涛,刘顺平,等. 耐高温钻井液降黏剂St/AMPS/AA的研制[J]. 钻井液与完井液,2012,29(2):18-20.LIU Lixin, DU Juntao, LIU Shunping, et al. Research on high temperature drilling fluid thinner St/AMPS/AA[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):18-20. [6] 李骑伶,赵乾,代华,等. 对苯乙烯磺酸钠/马来酸酐/木质素磺酸钙接枝共聚物钻井液降黏剂的合成及性能评价[J]. 高分子材料科学与工程,2014,30(2):72-76.LI Qiling, ZHAO Qian, DAI Hua, et al. Synthesis and characterization of calcium lignosulfonate grafted with p-Styrenesulfonate and maleic anhydride[J]. Polymer Materials Science & Engineering, 2014, 30(2):72-76. [7] 张龙军,彭波,林珍,等. 抗高温降黏剂MHRT的制备及性能评价[J]. 油田化学,2014,31(2):173-176.ZHANG Longjun, PENG Bo, LIN Zhen, et al. Preparation and properties of high temperature water base drilling fluid thinner MHRT[J]. Oilfield Chemistry, 2014, 31(2):173-176. [8] 黄维安,贾江鸿,李树皎,等. 抗高温低聚物FGDP的研制及在深井钻井中的应用[J]. 西安石油大学学报:自然科学版,2015,30(3):72-76.HUANG Weian, JIA Jianghong, LI Shujiao, et al. Development of low molecular polymer (KGDP) with high-temperature resistance and its application in drilling fluid for deep wells[J]. Journal of Xi'an Shiyou University(Natural Science Edition) , 2015, 30(3):72-76. [9] 胡文军,罗平亚,白杨,等. 新型高温高密度盐水钻井液研究[J]. 钻井液与完井液,2017,34(3):1-10. doi: 10.3969/j.issn.1001-5620.2017.03.001HU Wenjun, LUO Pingya, BAI Yang, et al. Study on a new high temperature high density saltwater drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):1-10. doi: 10.3969/j.issn.1001-5620.2017.03.001 [10] 杨旭坤,蒋官澄,贺垠博,等. 多巴仿生润滑剂在水基钻井液中的应用及机理研究[J]. 钻井液与完井液,2023,40(6):749-755,764. doi: 10.12358/j.issn.1001-5620.2023.06.008YANG Xukun, JIANG Guancheng, HE Yinbo, et al. Application and mechanism of Dopa biomimetic lubricant in water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):749-755,764. doi: 10.12358/j.issn.1001-5620.2023.06.008 [11] YANG X K, JIANG G C, LIU F, et al. Lubricity and mechanism of catechol-based biomimetic lubricant in water-based drilling fluid[J]. Tribology International, 2023, 188:108862. doi: 10.1016/j.triboint.2023.108862 [12] TAYLOR K K, COLE C V, BERRY B C, et al. Use of tanninsulfonic acid in the synthesis of water-dispersible polyaniline[J]. Journal of Applied Polymer Science, 2007, 103(4):2113-2119. doi: 10.1002/app.24782 [13] LUCKHAM F P, ROSSI S. The colloidal and rheological properties of bentonite suspensions[J]. Advances in Colloid and Interface Science, 1999, 82(1/3):43-92. -