Use Oil Based Drilling Fluid to Stabilize Borehole Wall and Prevent and Control Mud Losses in Fuxing Area
-
摘要: 针对复兴地区凉高山组地层漏失严重,自流井组东岳庙段溢漏同存,地层垮塌掉块,频繁憋泵蹩顶驱的问题。采用XRD衍射法对兴页L2HF井、兴页1002HF井凉高山组和自流井组东岳庙段地层的岩石进行矿物组成分析,使用微观SEM扫描电镜对该地层岩石进行了微观形貌分析,再结合现场情况总结了复兴地区井壁失稳和地层漏失机理。通过提高钻井液的乳化稳定性、降摩减阻和多重封堵性能,形成复兴地区页岩气井油基钻井液井壁稳定技术,该钻井液体系满足封堵性PPA小于2 mL,填砂管侵入深度小于2 cm;基于压裂砂堵效应,通过优选和研制了复合堵漏剂、诱导剂、悬浮剂,形成复兴地区程序法“控滤失”模拟砂堵防漏堵漏技术,堵漏浆体系可承压能力高达7 MPa,更适合应用于多裂缝地层。油基钻井液井壁稳定和防漏堵漏技术在兴页某-1井进行现场应用,相对于使用高密度柴油基钻井液体系的兴页某-2井,优化后钻井液体系的黏度和切力更低,润滑减阻性能更强,漏失和地层失稳等复杂情况明显减少。Abstract: In shale gas drilling in the Fuxing area, downhole troubles, such as mud losses in the Lianggaoshan formation, coexistence of well kick and mud losses in the Dongyuemiao member of the Ziliujing formation as well as borehole wall collapse which resulted in frequent pump and top drive halt, have frequently been encountered. To solve these problems, rock samples of the Lianggaoshan formation taken from the well Xingye-L2HF and the well Xingye-1002HF as well as rock samples from the Dongyuemiao member of the Ziliujing formation are analyzed with XRD diffraction for their mineral composition. Using SEM, the micromorphology of these rock samples is analyzed. By studying the field operational data, the mechanisms of borehole wall collapse and mud losses are summarized. The oil-based drilling fluid previously used is improved based on the studies for its emulsion stability, friction reduction and plugging capacity. The new oil-based drilling fluid for the drilling operation in the Fuxing area has plugging PPA of less than 2 mL and invasion depth into the sand tube of less than 2 cm. Based on the sand blocking effect in fracturing job, a mud loss control slurry formulated with compound lost circulation material, inducing agent and suspending agent was developed. The pressure bearing capacity of the mud cakes formed by this mud loss control slurry is 7 MPa, making it suitable for controlling mud losses into formations with multiple fractures. Compared with the high density diesel oil-based drilling fluid used in drilling a well in the Fuxing area previously, this new oil-based drilling fluid has lower viscosity, lower gel strengths and higher lubricity, and the occurrence of the complex situations, such as mud losses and borehole wall instability, has significantly been reduced.
-
表 1 兴页1002HF井及兴页L2HF井自流井组东岳庙段地层全岩矿物分析结果
样品号 矿物含量/% 石英 斜长石 方解石 白云石 方沸石 重晶石 硬石膏 黏土矿物 兴页L2HF井 33.7 5.0 4.5 3.0 5.2 48.6 兴页1002HF井 24.0 2.8 3.0 1.5 7.5 3.8 57.4 表 2 兴页1002HF井及兴页L2HF井自流井组东岳庙段地层黏土矿物分析结果
样品号 黏土总量/ 黏土矿物含量/% 间层比/% 伊/蒙间层/(I/S) 伊利石/I 高岭石/K 绿泥石/C % 相对 绝对 相对 绝对 相对 绝对 相对 绝对 I/S 兴页L2HF井 48.6 25 12.2 56 27.2 19 9.2 15 兴页1002HF井 57.4 17 9.8 37 21.2 20 11.5 26 14.9 20 表 3 不同基油新配浆钻井液的基本性能
基油 有机土/
%状态 φ6 /
φ3AV/
mPa·sPV/
mPa·sYP/
PaES/
VFLHTHP/
mL3#白油 1.5 滚前 4/3 33.0 28 5.0 872 滚后 4/3 32.5 29 3.5 635 2.8 2.0 滚前 6/5 39.0 32 7.0 916 滚后 6/5 39.0 32 7.0 723 2.8 2.5 滚前 7/6 46.0 38 8.0 1039 滚后 7/6 41.5 34 7.5 741 2.4 0#柴油 1.5 滚前 5/4 36.5 31 5.5 1015 滚后 5/4 35.5 30 5.5 731 2.6 2.0 滚前 7/6 41.5 34 7.5 1118 滚后 7/6 39.5 32 7.5 743 2.4 2.5 滚前 9/8 47.5 38 9.5 1200 滚后 9/8 45.0 35 10.0 758 2.0 表 4 不同运动黏度白油新配浆性能
运动黏度/
(mm2/s 40 ℃)基础油AV/
(mPa·s 40 ℃)AV/
mPa·sPV/
mPa·sYP/
Paφ6/
φ3ES/
VFLHTHP/
mL1.63 1.0 50 40 7 5/4 965 2.0 2.02 1.0 53 44 7 6/5 872 2.2 2.58 1.5 59 52 7 7/6 891 2.4 3.01 1.5 66 60 6 8/7 934 2.4 3.62 2.0 75 68 7 11/10 964 2.8 5.04 3.0 106 98 8 14/12 988 3.0 表 5 不同基油钻井液预防污染性能评价
钻井液 润湿剂-4 状态 φ600/φ300 φ6/φ3 AV/
mPa·sPV/
mPa·sYP/
Pa柴油基 空白 滚前 262/151 17.0/14.0 131.0 111 20.0 滚后 258/150 18.0/14.0 129.0 108 21.0 1.0% 滚前 219/121 8.0/6.0 109.5 98 11.5 滚后 232/126 8.0/6.0 116.0 106 10.0 2.0% 滚前 202/108 5.0/4.0 101.0 94 7.0 滚后 192/103 5.0/3.0 96.0 89 7.0 3.0% 滚前 198/105 4.0/3.0 99.0 93 6.0 滚后 190/100 4.0/3.0 95.0 90 5.0 白油基 空白 滚前 246/139 15.0/12.5 123.0 107 16.0 滚后 224/130 17.0/15.0 112.0 94 18.0 1.0% 滚前 213/120 11.0/9.5 106.5 93 13.5 滚后 180/99 6.0/5.0 90.0 81 9.0 2.0% 滚前 200/112 9.0/7.0 100.0 88 12.0 滚后 165/88 44.0/3.0 82.5 77 5.5 3.0% 滚前 184/103 6.5/5.0 92.0 81 9.0 滚后 160/84 3.0/2.0 80.0 76 4.0 注:32%膨润土粉+8%高岭石粉(过筛孔为140目的筛子)。 表 6 不同润滑剂在高密度白油基钻井液中的润滑减阻性能
润滑剂 AV/mPa·s PV/mPa·s YP/Pa φ6/φ3 ES/V EP极压润滑系数 泥饼黏附系数 抗磨性能/kg 空白 42.0 35 7.0 6/5 1174 0.096 0.105 10 2%CLUB 42.0 34 8.0 6/5 610 0.082 0.098 15 2%SLIP-O-NG 41.0 34 7.0 6/5 1128 0.048 0.051 20 2%纳米石墨 38.0 28 10.0 8/7 908 0.072 0.075 18 2%聚四氟乙烯 36.5 25 11.5 13/12 610 0.074 0.080 14 2%SM 39.0 33 6.0 7/6 700 0.066 0.072 16 表 7 不同种类封堵剂在高密度白油基钻井液封堵性能
封堵剂 状态 AV/
mPa·sPV/
mPa·sYP/
Paφ6/
φ3ES/
VFLHTHP/
mL空白 滚后 39 32 7 6/5 1102 3.0 2%SPNM-PA-M 滚后 42 24 8 6/5 1086 1.4 2%SEM-PA 滚后 43 34 9 7/6 1042 1.8 2%HISEAL 滚后 45 36 9 7/6 1034 2.4 JHSEAL-M 滚后 44 36 8 7/6 1063 2.2 2%JHSEAL-HS 滚后 44 35 9 7/6 982 2.0 表 8 高密度白油基钻井液体系成膜封堵性能评价
封堵剂 实验方法 P/MPa T/℃ FL/mL 2%SPNM-
PA-M填砂管(20~40目) 0.7 室温 (侵入1.0 cm) 填砂管(40~60目) 0.7 室温 0
(侵入0.8 cm)填砂管(60~80目) 0.7 室温 0
(侵入0.5 cm)PPA 3.5 100 6.0
(泥饼1 mm)2%JHSEAL-
HS填砂管(20~40目) 0.7 100 0
(侵入3.2 cm)填砂管(40~60目) 0.7 100 0
(侵入2.8 cm)填砂管(60~80目) 0.7 100 0
(侵入2.6 cm)PPA 3.5 100 3.6
(泥饼0.8 mm)表 9 钻屑在不同油基钻井液中的黏聚浓度
钻井液 钻屑
组成加量/
%情况
描述柴油基 大∶中∶小=
1~2 cm∶0.5 cm∶
6目=1∶1∶1,
含水率为10%80 无岩屑松散 150 有成团,黏软 白油基 160 无岩屑松散 180 有成团,黏软 表 10 不同润滑剂加量对白油基钻井液体系的润滑性能
SLIP-O-NG/
%AV/
mPa·sPV/
mPa·sYP/
Paφ6/
φ3ES/
VEP极压
润滑
系数泥饼
黏附
系数抗磨
性能/
kg0 42 34 8 6.0/5.0 1146 0.096 0.105 11 1 40 32 8 6.0/5.0 1106 0.064 0.076 18 2 40 32 8 6.5/5.0 1096 0.052 0.058 20 3 42 33 9 7.0/6.0 1046 0.048 0.056 20 4 46 36 10 8.0/7.0 998 0.046 0.055 20 表 11 不同油基钻井液体系封堵滤失性能对泥饼黏附系数的影响
配方 滤纸 滤膜 泥饼
质量黏滞
系数黏滞系数
降低率/%泥饼
质量黏滞系数 黏滞系数
降低率/%柴油基 1.2 mm/略厚 0.1126 0.8 mm/略厚 0.1653 柴油基+2%SPNM-PA-M 1.0 mm/略薄光滑 0.1062 5.7 0.8 mm/略薄光滑 0.1548 6.4 柴油基+2%JHSEAL-HS 1.0 mm/略薄光滑 0.1056 6.2 0.8 mm/略薄光滑 0.1562 5.5 白油基 0.8 mm/光滑 0.1048 6.9 0.8 mm/略薄光滑 0.1526 7.7 表 12 复合封堵剂在高密度白油基钻井液体系成膜封堵性能评价
封堵剂 实验方法 P/MPa T/℃ FL/mL 1.5%SPNM-PA-M+0.5%JHSEAL-HS 填砂管(20~40目) 0.7 室温 0(侵入1.2 cm) 填砂管(20~40目) 1.0 室温 0(侵入1.6 cm) 填砂管(60~80目) 0.7 室温 0(侵入0.6 cm) 填砂管(60~80目) 1.0 室温 0(侵入1.2 cm) PPA 3.5 80 4.8 (泥饼1 mm) 0.5%SPNM-PA-M+1.5%JHSEAL-HS 填砂管(20~40目) 0.7 室温 0(侵入2.4 cm) 填砂管(20~40目) 1.0 室温 0(侵入3.4 cm) 填砂管(60~80目) 0.7 室温 0(侵入1.8 cm) 填砂管(60~80目) 1.0 室温 0(侵入2.8 cm) PPA 3.5 80 3.0 (泥饼0.8 mm) 1.5%SPNM-PA-M+1.5%JHSEAL-HS 填砂管(20~40目) 0.7 室温 0(侵入1.0 cm) 填砂管(20~40目) 1.0 室温 0(侵入1.2 cm) 填砂管(60~80目) 0.7 室温 0(侵入0.4 cm) 填砂管(60~80目) 1.0 室温 0(侵入1.0 cm) PPA 3.5 80 1.8 (泥饼1 mm) 表 13 悬浮剂加量对堵漏浆漏失速率的影响
Blockvis/
%状态 API滤失时间/s HTHP滤失时间/s 稳定性 1 静置前 24.80 悬浮性较好 静置后 7.93 5.80 堵漏颗粒沉降 2 静置前 26.42 流态、悬浮性
较好静置后 15.73 13.50 流动好,少量
颗粒沉降3
(ρ=2.0 g/cm3)静置前 22.70 流态、悬浮性
较好静置后 13.93 12.77 流动好,无
颗粒沉降表 14 温度对Blockseal滤失性能影响评价
T/ ℃ API滤失时间/s 滤失量/g 常温 350 260 60 350 285 80 320 290 100 300 315 表 15 不同加量复合堵漏剂砂床堵漏效果评价(10~20目)
复合堵漏剂/
%承压能力/
MPaFL/
mL侵入深度/
cm高温高压
堵漏过程0 0.5 全漏失 0 加压开始漏失,加压至0.5 MPa,堵漏浆在20 s内滤完。 1.5 5.0 全漏失 0 加压开始漏失,加压至5 MPa后出现崩漏全漏失。 3.0 7.0 180 7.6 加压开始漏失,4 MPa后漏失减慢,5 MPa后不再漏失,至7 MPa,稳压30 min。 5.0 7.0 100 10.8 加压开始漏失,4 MPa后漏失减慢,5 MPa后不再漏失,至7 MPa,稳压30 min。 7.5 7.0 60 8.4 加压开始漏失,4 MPa后漏失减慢,5 MPa后不再漏失,至7 MPa,稳压30 min 表 16 在15%复合堵漏剂中加入诱导剂后裂缝配堵漏效果(5.0 mm)
堵漏材料配方 承压能力/
PaFL/
mL堵漏
过程① 4%Guard-1+2%Guard-2 4.5 全漏失 加压开始漏失,逐渐加压至4.5 MPa全部漏失。 ②4%Guard-1+4%Guard-2 5.5 全漏失 加压开始漏失,逐渐加压至2 MPa,漏失90 mL;逐渐加压至5.5 MPa,全部漏失,裂缝中有部分堵漏颗粒。 ② 4%Guard-1+2%Guard-2+1%Guard-3 7.0 360 加压开始漏失,漏失较慢;逐渐加压至5 MPa,停止漏失;至7 MPa,承可压30 min,裂缝中堵漏颗粒紧密堆积。 ③ 4%Guard-1+2%Guard-2+2%Guard-3 7.0 130 加压开始漏失,漏失较慢;逐渐加压至4 MPa,停止漏失。至7 MPa,承可压30 min,裂缝中堵漏颗粒紧密堆积。 表 17 堵漏浆体系裂缝封堵转向性能评价
模拟漏层/mm 开始封堵压力与漏失量 全部封堵压力与漏失量 最后可承压压力/MPa 2、3 3.0 MPa,2 mm裂缝漏失240 mL 3 MPa,3 mm裂缝漏失420 mL 7 2、5 2.5 MPa,2 mm裂缝漏失320 mL 6 MPa,5 mm裂缝漏失650 mL 7 3、5 4.0 MPa,3 mm裂缝漏失360 mL 6 MPa,5 mm裂缝漏失800 mL 7 表 18 油基钻井液现场性能参数表
参数
井段ρ/
g·cm-3FV/
sAV/
mPa·sPV
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
VEP
极压润滑系数兴页某-2F 造斜段 1.60~1.91 60~78 41~50 26~42 4.5~11 2.5~4.5/4~7 1.8~2.0 500~1208 ≤0.09 水平段 1.91~1.92 78~120 50~85 39~61 11.0~24 5~10/9~24 1.8~2.8 500~1220 兴页某-1 造斜段 1.80~1.93 60~71 43~51 37~43 6.0~8 3~5/6~8 1.8~2.0 511~838 ≤0.06 水平段3396 m前 1.93 69~70 45~47 38~41 6.0~7 3~4/6~8 1.2~1.4 833~851 水平段3396 m后 1.98 72~76 47~60 39~50 8.0~12 4~5/11~13 1.2~2.0 807~866 -
[1] 刘颖. 陆相泥页岩地层三压力预测及井壁稳定性分析[J]. 江汉石油职工大学学报,2021,34(5):5-7. doi: 10.3969/j.issn.1009-301X.2021.05.002LIU Ying. Triple -Pressure prediction and borehole wall stability analysis of continental shale formation[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2021, 34(5):5-7. doi: 10.3969/j.issn.1009-301X.2021.05.002 [2] 彭伟,舒逸,陈绵琨,等. 四川盆地复兴地区侏罗系凉高山组致密砂岩储层特征及其主控因素[J]. 地质科技通报,2023,42(3):102-113.PENG Wei, SHU Yi, CHEN Miankun, et al. Tight sandstone reservoir characteristics and main controlling factors of Jurassic Lianggaoshan Formation in Fuxing area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3):102-113. [3] 王莉,秦文斌,易争利. 复兴地区侏罗系页岩油气水平井井身结构优化设计[J]. 江汉石油职工大学学报,2022,35(6):28-30,34.WANG Li, QIN Wenbin, YI Zhengli. Optimization design of well structure in horizontal wells of Jurassic shale oil and gas in Fuxing area[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2022, 35(6):28-30,34. [4] 舒志国,周林,李雄,等. 四川盆地东部复兴地区侏罗系自流井组东岳庙段陆相页岩凝析气藏地质特征及勘探开发前景[J]. 石油与天然气地质,2021,42(1):212-223.SHU Zhiguo, ZHOU Lin, LI Xiong, et al. Geological characteristics of gas condensate reservoirs and their exploration and development prospect in the Jurassic continental shale of the Dongyuemiao Member of Ziliujing Formation, Fuxing area, eastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1):212-223. [5] 刘可成,周俊,崔鑫,等. 阜康凹陷井壁失稳机理与封堵防塌油基钻井液体系[J]. 钻井液与完井液,2022,39(4):451-458. doi: 10.12358/j.issn.1001-5620.2022.04.009LIU Kecheng, ZHOU Jun, CUI Xin, et al. Mechanisms of borehole wall instability in Fukang sag block and an oil based drilling fluid with plugging and inhibitive capacities[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):451-458. doi: 10.12358/j.issn.1001-5620.2022.04.009 [6] 马少强. 泥页岩地层油基钻井液封堵防塌技术研究与应用[J]. 西部探矿工程,2022,34(6):43-45. doi: 10.3969/j.issn.1004-5716.2022.06.014MA Shaoqiang. Research and application of Oil-Based drilling fluid plugging and Anti-Collapse technology in shale formation[J]. West-China Exploration Engineering, 2022, 34(6):43-45. doi: 10.3969/j.issn.1004-5716.2022.06.014 [7] 李科,贾江鸿,于雷,等. 页岩油钻井漏失机理及防漏堵漏技术[J]. 钻井液与完井液,2022,39(4):446-450. doi: 10.12358/j.issn.1001-5620.2022.04.008LI Ke, JIA Jianghong, YU Lei, et al. Mechanisms of lost circulation and technologies for mud loss prevention and control in shale oil drilling[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):446-450. doi: 10.12358/j.issn.1001-5620.2022.04.008 [8] 李文哲,傅栋,王翔,等. 龙马溪页岩微米防漏堵漏剂研究与应用[J]. 钻采工艺,2021,44(6):111-114.LI Wenzhe, FU Dong, WANG Xiang, et al. Research and application of micron anti-leak and plugging technology in Changning-Weiyuan Longmaxi formation[J]. Drilling & Production Technology, 2021, 44(6):111-114. [9] 白杨,李道雄,李文哲,等. 长宁区块龙马溪组水平段井壁稳定钻井液技术[J]. 西南石油大学学报(自然科学版),2022,44(2):79-88.BAI Yang, LI Daoxiong, LI Wenzhe, et al. Borehole wall stabilization drilling fluid technology of Longmaxi formation horizontal section in Changning block[J]. Journal of Southwest Petroleum University(Science & Technology Edition) , 2022, 44(2):79-88. [10] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术,2021,49(5):31-38.WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5):31-38. [11] 刘永峰,张伟国,狄明利,等. 一种环保油基钻井液体系[J]. 钻井液与完井液,2021,38(4):449-455.LIU Yongfeng, ZHANG Weiguo, DI Mingli, et al. An environmentally friendly oil base mud[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):449-455. [12] 陈彬. 油基钻井液用抗磨减阻剂的室内研究[J]. 当代化工,2022,51(7):1660-1663.CHEN Bin. Laboratory research on anti-wear and drag-reducing agents for oil-based drilling fluids[J]. Contemporary Chemical Industry, 2022, 51(7):1660-1663. [13] 张高波,高秦陇,马倩芸. 提高油基钻井液在页岩气地层抑制防塌性能的措施[J]. 钻井液与完井液,2019,36(2):141-147.ZHANG Gaobo, GAO Qinlong, MA Qianyun. Discussion on the enhancement of the inhibitive capacity of oil base drilling fluids in shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):141-147. [14] 张东清,万云强,张文平,等. 涪陵页岩气田立体开发优快钻井技术[J]. 石油钻探技术,2023,51(2):16-21.ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, et al. Optimal and fast drilling technologies for stereoscopic development of the Fuling shale[J]. Petroleum Drilling Techniques, 2023, 51(2):16-21. [15] 赵洪波,单文军,朱迪斯,等. 裂缝性地层漏失机理及堵漏材料新进展[J]. 油田化学,2021,38(4):740-746.ZHAO Hongbo, SHAN Wenjun, ZHU Disi, et al. Advance of fractured formation lost circulation mechanism and lost circulation materials in oil and gas wells[J]. Oilfield Chemistry, 2021, 38(4):740-746. -