留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温深井温压耦合下流体性质对井筒压力的影响特性

刘平江 和建勇 张晔 毕毅 张瑞华 杨谋

刘平江,和建勇,张晔,等. 高温深井温压耦合下流体性质对井筒压力的影响特性[J]. 钻井液与完井液,2024,41(3):288-295 doi: 10.12358/j.issn.1001-5620.2024.03.002
引用本文: 刘平江,和建勇,张晔,等. 高温深井温压耦合下流体性质对井筒压力的影响特性[J]. 钻井液与完井液,2024,41(3):288-295 doi: 10.12358/j.issn.1001-5620.2024.03.002
LIU Pingjiang, HE Jianyong, ZHANG Ye, et al.Study on effects of fluid properties on borehole pressure under temperature and pressure coupling in high temperature deep wells[J]. Drilling Fluid & Completion Fluid,2024, 41(3):288-295 doi: 10.12358/j.issn.1001-5620.2024.03.002
Citation: LIU Pingjiang, HE Jianyong, ZHANG Ye, et al.Study on effects of fluid properties on borehole pressure under temperature and pressure coupling in high temperature deep wells[J]. Drilling Fluid & Completion Fluid,2024, 41(3):288-295 doi: 10.12358/j.issn.1001-5620.2024.03.002

高温深井温压耦合下流体性质对井筒压力的影响特性

doi: 10.12358/j.issn.1001-5620.2024.03.002
基金项目: 国家自然科学基金项目“干热岩型地热泡沫钻井流体相变行为下井筒温度压力响应特性研究”(52174008)。
详细信息
    作者简介:

    刘平江,高级工程师,主要钻完井工艺方面研究工作。电话 (0317)2717042;E-mail :liupjiang@cnpc.com.cn

    通讯作者:

    杨谋,教授,博士;主要从事油气井固井井筒流动、传质传热、工艺及室内评价等方面的研究。

  • 中图分类号: TE 258

Study on Effects of Fluid Properties on Borehole Pressure under Temperature and Pressure Coupling in High Temperature Deep Wells

  • 摘要: 深井高温高压环境对流体密度和流体流变参数影响较大,忽略其作用使得井筒压力认识不准确,制约着钻完井作业安全。基于能量守恒原理,建立了井筒温度计算模型,考虑流体流态对温度压力影响,建立了温压耦合条件下井筒压力计算方法,结合现场实测数据验证了温度压力模型计算可靠性。研究表明:温度对流体密度和流变参数影响程度大于压力,随着井深增加,环空流体密度和动切力逐渐增大。随着循环时间增加,井底温度逐渐降低,环空流体密度、动切力及流性指数逐渐增大,而稠度系数逐渐降低;温压耦合条件下环空ECD低于未考虑工况,两者相差0.067 g/cm3。因此,若不考虑耦合对流体密度和流变参数影响时,使得设计流体密度偏低,易诱发溢流或井喷事故发生。该研究成果与认识为深层超深井井筒温度压力精细评价奠定了关键理论基础,降低了钻完井井下作业风险。

     

  • 图  1  井筒传热微分单元示意图

    图  2  计算技术流程图

    图  3  井径和井斜角随井深分布关系

    图  4  出口温度和泵压随循环时间的分布关系

    图  5  环空温度随循环时间关系图

    图  6  井底环空温度随循环时间的关系图

    图  7  环空流体密度随循环时间关系图

    图  8  环空流体动切力随循环时间关系图

    图  9  在井底环空流体稠度系数和 流性指数随循环时间关系

    图  10  在环空流体循环摩阻随时间关系图

    图  11  在环空流体ECD随循环时间关系图

    图  12  在井底考虑温压耦合和无温度压力 影响下ECD随循环时间关系

  • [1] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177.
    [2] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542.
    [3] 赵向阳,赵聪,王鹏,等. 超深井井筒温度数值模型与解析模型计算精度对比研究[J]. 石油钻探技术,2022,50(4):69-75.

    ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in Ultra-Deep wells[J]. Petroleum Drilling Techniques, 2022, 50(4):69-75.
    [4] YANG M, YANG L C, WANG T, et al. Estimating formation leakage pressure using a coupled model of circulating temperature-pressure in an eccentric annulus[J]. Journal of Petroleum Science and Engineering, 2020, 189:106918. doi: 10.1016/j.petrol.2020.106918
    [5] 孙金声,蒋官澄,贺垠博,等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.

    SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5):76-89.
    [6] ORUN C B, AKPABIO J U, AGWU O E. Drilling fluid design for depleted zone drilling: an integrated review of laboratory, field, modelling and cost studies[J]. Geoenergy Science and Engineering, 2023, 226:211706. doi: 10.1016/j.geoen.2023.211706
    [7] 鄢捷年,李志勇,张金波. 深井油基钻井液在高温高压下表观粘度和密度的快速预测方法[J]. 石油钻探技术,2005,33(5):35-39.

    YAN Jienian, LI Zhiyong, ZHANG Jinbo. Methods for quickly predicting apparent viscosity and density of Oil-Based drilling fluids under HTHP conditions[J]. Petroleum Drilling Techniques, 2005, 33(5):35-39.
    [8] 何淼,施皓瀚,许明标. 水基钻井液高温高压流变动力学研究[J]. 钻井液与完井液,2021,38(3):271-279.

    HE Miao, SHI Haohan, XU Mingbiao. Study of rheological dynamics of Water-Based drilling fluids at high temperature and high pressure[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):271-279.
    [9] DEMIRDAL B, CUNHA J C. Importance of drilling fluids' rheological and volumetric characterization to plan and optimize managed pressure drilling operations[J]. Journal of Canadian Petroleum Technology, 2009, 48(2):8-14. doi: 10.2118/09-02-08-TB
    [10] 赵胜英,鄢捷年,舒勇,等. 油基钻井液高温高压流变参数预测模型[J]. 石油学报,2009,30(4):603-606. doi: 10.7623/syxb200904023

    ZHAO Shengying, YAN Jienian, SHU Yong, et al. Prediction model for rheological parameters of oil-based drilling fluids at high temperature and high pressure[J]. Acta Petrolei Sinica, 2009, 30(4):603-606. doi: 10.7623/syxb200904023
    [11] DEMIRDAL B, MISKA S, TAKACH N, et al. Drilling fluids rheological and volumetric characterization under downhole conditions[C]//SPE Latin America and Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina, 2007: SPE-108111-MS.
    [12] ZAMORA M, ROY S, SLATER K, et al. Study on the volumetric behavior of base Oils, brines, and drilling fluids under extreme temperatures and pressures[J]. SPE Drilling & Completion, 2013, 28(3):278-288.
    [13] 鄢捷年,赵雄虎. 高温高压下油基钻井液的流变特性[J]. 石油学报,2003,24(3):104-109. doi: 10.3321/j.issn:0253-2697.2003.03.023

    YAN Jienian, ZHAO Xionghu. Rheological properties of oil-based drilling fluids at high temperature and high pressure[J]. Acta Petrolei Sinica, 2003, 24(3):104-109. doi: 10.3321/j.issn:0253-2697.2003.03.023
    [14] 由福昌,文华,吴娇,等. 高密度无土相油基钻井液[J]. 钻井液与完井液,2022,39(2):146-150.

    YOU Fuchang, WEN Hua, WU Jiao, et al. High density clay-free oil based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):146-150.
    [15] 张更,李军,柳贡慧,等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698-704.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):698-704.
    [16] 樊洪海. 实用钻井流体力学[M]. 北京: 石油工业出版社, 2014.

    FAN Honghai. Practical Drilling Fluid Mechanics[J]. Beijing: Petroleum Industry Press, 2014.
    [17] CHEN Y H, YU M J, MISKA S, et al. Fluid flow and heat transfer modeling in the event of lost circulation and its application in locating loss zones[J]. Journal of Petroleum Science and Engineering, 2017, 148:1-9. doi: 10.1016/j.petrol.2016.08.030
    [18] 张玉文,张洋,宋涛. 高温下水基钻井液核心组分微观行为分析[J]. 钻井液与完井液,2024,41(1):39-44.

    ZHANG Yuwen, ZHANG Yang, SONG Tao. Microscopic behavior analysis of core components of water-based drilling fluid at high temperature[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):39-44.
  • 加载中
图(12)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  156
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-31
  • 修回日期:  2024-02-16
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回