留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单相缓速酸酸蚀裂缝导流规律

崔波 冯浦涌 姚二冬 荣新明 周福建

崔波,冯浦涌,姚二冬,等. 单相缓速酸酸蚀裂缝导流规律[J]. 钻井液与完井液,2024,41(2):270-278 doi: 10.12358/j.issn.1001-5620.2024.02.018
引用本文: 崔波,冯浦涌,姚二冬,等. 单相缓速酸酸蚀裂缝导流规律[J]. 钻井液与完井液,2024,41(2):270-278 doi: 10.12358/j.issn.1001-5620.2024.02.018
CUI Bo, FENG Puyong, YAO Erdong, et al.Development and corrosion inhibition mechanisms of a corrosion inhibitor for self-diverting acids[J]. Drilling Fluid & Completion Fluid,2024, 41(2):270-278 doi: 10.12358/j.issn.1001-5620.2024.02.018
Citation: CUI Bo, FENG Puyong, YAO Erdong, et al.Development and corrosion inhibition mechanisms of a corrosion inhibitor for self-diverting acids[J]. Drilling Fluid & Completion Fluid,2024, 41(2):270-278 doi: 10.12358/j.issn.1001-5620.2024.02.018

单相缓速酸酸蚀裂缝导流规律

doi: 10.12358/j.issn.1001-5620.2024.02.018
基金项目: 国家自然科学基金"纳米乳液在致密砂岩储层中的吸附特性及其解水锁机制研究"(52004306);国家科技重大专项“中亚和中东地区复杂碳酸盐岩油气藏采油采气关键技术研究与应用”(2017ZX05030005)。
详细信息
    作者简介:

    崔波,硕士,高级工程师,1986年生,现在从事储层改造技术研究。E-mail:cuibo2@cosl.com.cn。

    通讯作者:

    姚二冬,博士,高级工程师,1985年生,现在从事油气田开发技术研究。E-mail:yaoed@cup.edu.cn。

  • 中图分类号: TE357.1

Development and Corrosion Inhibition Mechanisms of a Corrosion Inhibitor for Self-Diverting Acids

  • 摘要: 低渗碳酸盐岩酸压成功的关键在于酸压后形成可在地层闭合压力下保持高导流能力的酸蚀裂缝。单相缓速酸是一种具有纳米结构、低伤害、低摩阻及高缓速性能的新型酸液体系,应用潜力大,但其酸蚀裂缝导流规律尚不明确。以光滑岩板和粗糙岩板为实验对象,以盐酸、胶凝酸和乳化酸为对比,利用酸液刻蚀和酸蚀裂缝导流实验、表面形貌扫描和连续强度测试仪,研究了酸液类型、交替注入级数、注入速度、黏度比、反应时间、岩板类型对导流能力的影响。结果表明:单相缓速酸相对于盐酸、胶凝酸和乳化酸,可形成强沟道型刻蚀形貌,差异化溶蚀程度高,岩板强度损伤减缓,在高闭合压力下可保持较高的导流能力。提高酸液交替注入级数(≥3级)、注入速度、黏度比(黏度差≥50 mPa·s)及岩板初始表面粗糙度,有助于形成优势酸液流通通道。单相缓速酸实现高导流酸蚀裂缝机理为:①黏性指进形成差异化刻蚀沟道;②主蚓孔滤失形态及“虹吸”效应减缓裂缝表面强度损伤。

     

  • 图  1  酸液刻蚀设备示意图

    图  2  原始岩板尺寸图和巴西劈裂法

    图  3  DL-1(单相酸)岩板横剖面(左)和纵剖面(右)

    图  4  酸蚀后岩板强度损伤

    图  5  不同酸液体系酸蚀裂缝表面放大照片

    图  6  滤失模式对软化层的影响

    图  7  不同酸液类型酸蚀导流能力(光滑岩板)

    图  8  不同酸液类型酸蚀导流能力(粗糙岩板)

    图  9  光滑岩板和粗糙岩板接触比

    图  10  不同交替注入级数酸蚀导流能力

    图  11  不同黏度比酸蚀导流能力

    图  12  不同注入排量酸蚀导流能力

    图  13  不同反应时间酸蚀导流能力实验结果

    表  1  实验岩板孔渗及力学参数

    岩心来源渗透率/
    mD
    孔隙度/
    %
    p/
    MPa
    杨氏模
    量/GPa
    泊松
    Indiana石灰岩露头1.8920.442.013.1740.224
    下载: 导出CSV

    表  2  酸液体系性能参数

    体系体系配方η/mPa·s
    (170 s−1,25 ℃)
    缓速率/
    %
    界面张力(25 ℃)/
    mN·m−1
    电导率/
    mS·cm−1
    摩擦阻力/
    %
    粒径/
    nm
    盐酸20%HCl1.631.1100100
    单相缓速酸20%HCl+5%
    单相微乳液
    2.192.60.00398.825(加0.1
    减阻剂)
    8~100(粒
    径中值约为20 nm)
    稠化酸20%HCl+
    0.8%稠化剂
    48.771.330.210030%
    乳化酸酸物质的量浓度相同56.696.80(油包水乳液)0150>1000
    下载: 导出CSV

    表  3  酸蚀裂缝导流能力测试实验方案

    实验变量岩板编号交替注入
    酸压液体
    注入级数泵速/
    mL·min-1
    t/
    min
    总液量/
    mL
    总时长/
    min
    酸液类型DL-1/DL-1C变黏滑溜水310010600060
    单相缓速酸310010
    DL-2/DL-2C变黏滑溜水310010600060
    盐酸310010
    DL-3/DL-3C变黏滑溜水310010600060
    乳化酸310010
    DL-4/DL-4C变黏滑溜水310010600060
    胶凝酸310010
    下载: 导出CSV

    表  4  光滑岩板酸蚀表面定量化描述

    变量编号形式接触比/%面迂曲度迂曲倾角峰谷差/%峰谷差方差刻蚀体积/cm3
    酸液体系单相缓速酸DL-1沟槽10.11.0874.744.920.035058.38
    盐酸DL-2沟槽18.91.1576.7811.080.0558124.57
    乳化酸DL-3均匀23.31.0380.170.200.005513.07
    胶凝酸DL-4均匀21.31.0440.590.220.000236.18
    注入
    级数
    一级交替DL-5均匀17.41.0461.172.440.009069.18
    二级交替DL-6沟槽24.31.0581.903.670.013768.51
    四级交替DL-7沟槽14.71.1554.594.510.026763.98
    黏度
    低黏度比DL-10均匀34.71.0550.700.900.001857.99
    高黏度比DL-11沟槽15.11.1115.284.980.157368.99
    注入速度低注速DL-12沟槽21.01.0883.162.890.021749.14
    中注速DL-13沟槽25.31.0773.223.550.021857.07
    反应时间30 minDL-14沟槽13.51.0581.982.590.016529.00
    90 minDL-15沟槽30.11.1656.399.060.1532103.95
    下载: 导出CSV
  • [1] 张倩,李年银,李长燕,等. 中国海相碳酸盐岩储层酸化压裂改造技术现状及发展趋势[J]. 特种油气藏,2020,27(2):1-7.

    ZHANG Qian, LI Nianyin, LI Changyan, et al. Overview and trend of Acid-Fracturing technology for marine carbonate reservoirs in China[J]. Special Oil & Gas Reservoirs, 2020, 27(2):1-7.
    [2] 王云金,周福建,苏航,等. 中东碳酸盐岩储集层高效酸压用微乳酸性能评价[J]. 石油勘探与开发,2023,50(5):1041-1048. doi: 10.11698/PED.20220739

    WANG Yunjin, ZHOU Fujian, SU Hang, et al. Performance evaluation of microemulsion acid for integrated acid fracturing in Middle Eastern carbonate reservoirs[J]. Petroleum Exploration and Development, 2023, 50(5):1041-1048. doi: 10.11698/PED.20220739
    [3] 冯炜,杨晨,陶善浔,等. 碳酸盐岩酸蚀裂缝表面形态特征的实验研究[J]. 岩性油气藏,2020,32(3):166-172.

    FENG Wei, YANG Chen, TAO Shanxun, et al. Experimental study on the surface feature of acid-etched fractures in carbonate rocks[J]. Lithologic Reservoirs, 2020, 32(3):166-172.
    [4] 刘洋,熊勇富,邓世杨,等. 碳酸盐岩差异刻蚀酸压工艺物模试验研究[J]. 石油机械,2021,49(7):123-129.

    LIU Yang, XIONG Yongfu, DENG Shiyang, et al. Physical model test of differential etching acid fracturing technology for carbonate rocks[J]. China Petroleum Machinery, 2021, 49(7):123-129.
    [5] 崔波,冯浦涌,姚二冬,等. 缓速酸段塞注入酸蚀裂缝的刻蚀形态及导流规律——以伊拉克F油田低孔渗碳酸盐岩储层为例[J]. 大庆石油地质与开发,2023,42(4):74-80.

    CUI Bo, FENG Puyong, YAO Erdong, et al. Etching geometry and conductivity of acid-etched fractures injected with retarded acid slug: Taking low-porosity and low-permeability carbonate reservoir of F Oilfield in Iraq as an example[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4):74-80.
    [6] ABDRAZAKOV D, PANGA M K, DAEFFLER C, et al. New single-phase retarded acid system boosts production after acid fracturing in kazakhstan[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette: SPE, 2018: SPE-189559-MS.
    [7] 郭凌峣. 多级交替注入酸压酸蚀裂缝导流能力研究[D]. 成都: 西南石油大学, 2019.

    GUO Lingyao. Study on conductivity of acid etching fracture of multistage alternating injection acid fracturing[D]. Chengdu: Southwest Petroleum University, 2019.
    [8] 邵俊杰. 塔河油田多级交替注入酸压工艺研究[D]. 北京: 中国石油大学(北京), 2019.

    SHAO Junjie. Research on multistage alternating injection of acid fracturing technology in Tahe oil field[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [9] ZHANG L F, ZHOU F J, MOU J Y, et al. A new method to improve long-term fracture conductivity in acid fracturing under high closure stress[J]. Journal of Petroleum Science and Engineering, 2018, 171:760-770. doi: 10.1016/j.petrol.2018.07.073
    [10] POURNIK M. Laboratory-scale fracture conductivity created by acid etching[D]. College Station: Texas A&M University, 2008.
    [11] GOU B, GUAN C H, LI X, et al. Acid-etching fracture morphology and conductivity for alternate stages of self-generating acid and gelled acid during acid-fracturing[J]. Journal of Petroleum Science and Engineering, 2021, 200:108358. doi: 10.1016/j.petrol.2021.108358
    [12] LU C, BAI X, LUO Y, et al. New study of etching patterns of acid-fracture surfaces and relevant conductivity[J]. Journal of Petroleum Science and Engineering, 2017, 159:135-147. doi: 10.1016/j.petrol.2017.09.025
    [13] DETOURNAY E, DEFOURNY P. A phenomenological model for the drilling action of drag bits[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(1):13-23.
    [14] HORNICKEL VELASQUEZ Y Y. Experimental study of acid fracture conductivity on soft carbonates[D]. College Station: Texas A&M University, 2017.
    [15] ALMOMEN A M. The effect of initial condition of fracture surfaces, acid spending, and type on conductivity of acid fracture[D]. College Station: Texas A&M University, 2013.
    [16] 苟波. 非均质碳酸盐岩储层酸压滤失机理与导流能力优化研究[D]. 成都: 西南石油大学, 2015.

    GOU Bo. Acid leakoff mechanism and conductivity optimization in acid fracturing in heterogeneous carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2015.
    [17] 程志林,隋微波,宁正福,等. 数字岩芯微观结构特征及其对岩石力学性能的影响研究[J]. 岩石力学与工程学报,2018,37(2):449-460.

    CHENG Zhilin, SUI Weibo, NING Zhengfu, et al. Microstructure characteristics and its effects on mechanical properties of digital core[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2):449-460.
    [18] GDANSKI R D, LEE W S. On the design of fracture acidizing treatments[C]//SPE Production Operations Symposium. Oklahoma City, Oklahoma: SPE, 1989: SPE-18885-MS.
    [19] DONG R C, WHEELER M F, MA K, et al. A 3D acid transport model for acid fracturing treatments with viscous fingering[C]//SPE Annual Technical Conference and Exhibition. Virtual: SPE, 2020: SPE-201465-MS.
    [20] DONG R C, WHEELER M F, SU H, et al. Modeling acid fracturing treatments in heterogeneous carbonate reservoirs[C]//The Woodlands: SPE International Conference on Oilfield Chemistry. The Woodlands, Texas, USA: SPE, 2021: SPE-204304-MS.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  73
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-01-29
  • 录用日期:  2024-02-25
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回