A Device for Quantitatively Evaluating the Hydration of Cement in Impacting Stability of Hydrate Layers and a Case Evaluation
-
摘要: 针对海洋深水水合物层在固井过程水泥水化放热对水合物分解量的影响缺乏量化评价装置及方法的问题,充分考虑固井过程中水泥浆体系与水合物层的接触方式,建立了一套模拟水合物层固井的水合物稳定性评价实验装置,该装置实现了低温高压下水合物的生成、带压条件下水泥浆与水合物层接触的流动泵入,直观地测试了与水合物层直接接触下的水泥浆水化放热对地层温度、压力的影响。根据设计的实验装置,通过对水合物饱和度、水合物分解气量的推导计算,建立了一套水合物模拟地层的制作方法,并建立了水泥浆水化影响水合物层稳定性评价方法。根据南海地区浅层地质条件建立了模拟水合物地层,泵入G级油井水泥净浆、低密水泥浆体系和低热水泥浆体系等3组水泥浆体系,得出单位体积油井水泥候凝过程中分解水合物的气体的量分别为0.7356、0.1091和0.0649 mol/L,且评测表明,低热水泥浆体系能够大幅度缩短固井候凝的等待时间。该研究为油气固井过程中对浅层水合物的影响提供了直观测试方法,也证明了海洋深水水合物地层中使用低热水泥浆体系的必要性。Abstract: A new device is developed aimed at evaluating the effect of the hydration heat of the cement on the amount of the dissociated hydrate during well cementing operation. In developing this device, the contact manners of the cement slurries with the hydrate are fully considered. Using this device, hydrates at low temperature and high pressure can be generated, the cement slurry can be pumped under pressure into the wellbore while in contact with the hydrate layers, and the effect of the hydration heat of the cement slurry which is directly in contact with the hydrate layers on the formation temperature and pressure is directly measured. By calculating the gas saturation of hydrates and the amount of gas released from the dissociation of hydrates, a method of developing simulated hydrate formation is established taking into account the properties of the device, and a method is formulated for evaluating the effect of the hydration of cement on the stability of hydrate layers. In laboratory experiments, a simulated hydrate formation is constructed based on the geology of the shallower formations in south China Sea, three different cement slurries (a blank class G oil well cement slurry, a low-density cement slurry and a low-heat cement slurry) are pumped into the simulated hydrate formation. The experiment results show that in the setting process of the cement slurries, the quantities of the gas released from the hydrate by the heat from the hydration of the three kinds of cement are 0.7356, 0.1091 and 0.0649 mol/L, respectively. These results show that the low-heat cement slurry can greatly shorten the time required for the cement slurry to set. This study has provided a method of directly testing the effect of cement hydration on the hydrates in the shallower formations, and it also shows that low-heat cement should be used in cementing the hydrate formations in deep water drilling.
-
表 1 水合物层固井实验用水泥配方
配方 G级水
泥/%降失水
剂/%分散
剂/%微硅/
%漂珠/
%早强
剂/%储能微
球/%水固
比1# 100 0 0 0 0 0 0 0.5 2# 100 2.0 1.0 12.5 12.5 0 0 0.5 3# 100 2.0 1.0 12.5 12.5 0.25 20.0 0.5 表 2 水合物层固井实验用水泥性能
配方 ρ/
g·cm−3p24 h/
MPat稠化/
min水化温度峰值/℃ 水化热/
J·g−1沉降稳定性/
g·cm−3PV/
mPa·sYP/
Pa20 ℃ 4 ℃ 1# 1.92 0 >600 92.3 47.7 283.46 <0.02 202 6.48 2# 1.50 0 >600 66.9 40.9 208.41 <0.02 231 8.88 3# 1.51 3.6 295 47.6 31.1 161.39 <0.02 97 13.32 表 3 3组水合物稳定后模拟地层实验数据
配方 釜内温度Ti/K 釜内压力pi/MPa 水合物饱和度S/% 1# 276.55 4.99 36.94 2# 277.15 5.00 36.80 3# 276.88 5.01 36.75 表 4 水合物层水泥候凝实验数据
配方 水合物稳定后的釜内温度Ti/K 水合物稳定后釜内压力pi/MPa $t$时刻釜内压力pt/MPa t时刻釜内温度Tt/K 水泥体积变化率λ 单位体积水泥浆水化分解气量/(mol·L−1) 1# 276.55 4.99 6.95 281.95 −0.0197 0.7356 2# 277.15 5.00 5.29 278.55 −0.0081 0.1091 3# 276.88 5.01 5.17 277.05 −0.0051 0.0649 -
[1] 申志聪,王栋,贾永刚. 水合物直井与水平井产气效果分析——以神狐海域SH2站位为例[J]. 海洋工程,2019,37(4):107-116.SHEN Zhicong, WANG Dong, JIA Yonggang. Analysis on gas hydrate exploitation response between the horizontal and vertical wells at SH2 site in the Shenhu area of the South China Sea[J]. The Ocean Engineering, 2019, 37(4):107-116. [2] LEE S Y, HOLDER G D. Methane hydrates potential as a future energy source[J]. Fuel Processing Technology, 2001, 71(1/3):181-186. [3] 王韧,孙金声,孙慧翠,等. 不同驱动力条件下改性淀粉, 羧甲基纤维素钠和黄原胶对水合物形成的影响[J]. 中国石油大学学报(自然科学版),2021,45(1):127-136.WANG Ren, SUN Jinsheng, SUN Huicui, et al. Effects of modified starch, CMC and XC on hydrate formation under different driving forces[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2021, 45(1):127-136. [4] 孙峰. 天然气水合物开采技术现状及发展趋势[J]. 化工设计通讯,2018,44(1):55.SUN Feng. Status and development trend of natural gas hydrate mining technology[J]. Chemical Engineering Design Communications, 2018, 44(1):55. [5] 李月清. 深海起锚: 风起帆扬正当时[J]. 中国石油企业,2020(7):43-44. [6] 郭旭洋,金衍,林伯韬,等. 南海天然气水合物水平井降压开采诱发沉积物力学响应规律[J]. 中国石油大学学报(自然科学版),2022,46(6):41-47.GUO Xuyang, JIN Yan, LIN Baitao, et al. Mechanical response of sediments induced by horizontal well depressurization of natural gas hydrate in South China Sea[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2022, 46(6):41-47. [7] 孙金声,廖波,王金堂,等. 温度场扰动对天然气水合物相态的影响机制[J]. 中国石油大学学报(自然科学版),2023,47(5):115-121.SUN Jinsheng, LIAO Bo, WANG Jintang, et al. Mechanism on influence of temperature field perturbation on phase state of natural gas hydrate[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2023, 47(5):115-121. [8] URGELES R, CAMERLENGHI A. Magnitude and recurrence of submarine landslides: active vs. passive margins[C]//European Geosciences Union General Assembly 2016 (EGU2016), Vienna, Austria, 2016: 2016-6194. [9] 宋建建,许明标,王晓亮,等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218-223.SONG Jianjian, XU Mingbiao, WANG Xiaoliang, et al. The effects of a new phase change material on the properties of low heat cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):218-223. [10] 郭永宾,李中,刘和兴,等. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液,2019,36(4):500-505.GUO Yongbin, LI Zhong, LIU Hexing, et al. Development of a low temperature early strength cement slurry with low exothermic heat of hydration[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):500-505. [11] 冯茜,刘先杰,彭志刚,等. 低水化热水泥浆用微胶囊型热控材料制备及应用[J]. 精细化工,2019,36(7):1453-1458.FENG Qian, LIU Xianjie, PENG Zhigang, et al. Preparation and application of microcapsule type thermal control material for low hydrationheat cement slurry[J]. Fine Chemicals, 2019, 36(7):1453-1458. [12] 张俊斌,李彬,金颢,等. 深水水合物层固井低水化热水泥浆体系研究及应用[J]. 中国海上油气,2020,32(1):119-124.ZHANG Junbin, LI Bin, JIN Hao, et al. Study and application of a low hydration heat cement slurry system for the cementing of deepwater hydrate layer[J]. China Offshore Oil and Gas, 2020, 32(1):119-124. [13] BU Y H, MA R, LIU H J, et al. Low hydration exothermic well cement system: the application of energy storage microspheres prepared by high-strength hollow microspheres carrying phase change materials[J]. Cement and Concrete Composites, 2021, 117:103907. doi: 10.1016/j.cemconcomp.2020.103907 [14] 郭平,熊枫. 多孔介质中动态合成天然气水合物的新方法[J]. 科学技术与工程,2017,17(10):173-176. doi: 10.3969/j.issn.1671-1815.2017.10.029GUO Ping, XIONG Feng. A new method of dynamic synthesis of natural gas hydrate in porous media[J]. Science Technology and Engineering, 2017, 17(10):173-176. doi: 10.3969/j.issn.1671-1815.2017.10.029 [15] 庞维新,陈光进. 甲烷水合物分解实验[J]. 化工学报,2008,59(3):681-686.PANG Weixin, CHEN Guangjin. Dissociation experiment of methane hydrate[J]. CIESC Journal, 2008, 59(3):681-686. [16] 王瑞和,齐志刚,步玉环,等. 一种新型曼尼希碱促凝剂的性能研究[J]. 石油钻探技术,2009,37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003WANG Ruihe, QI Zhigang, BU Yuhuan, et al. Study of a new Mannich-Based accelerating agent[J]. Petroleum Drilling Techniques, 2009, 37(3):13-16. doi: 10.3969/j.issn.1001-0890.2009.03.003 [17] CHENEVERT M E, SHRESTHA B. Shrinkage properties of cement[C]//Paper presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1987: SPE-16654-MS. [18] REDDY B R, XU Y, RAVI K, et al. Cement-Shrinkage measurement in oilwell cementing—a comparative study of laboratory methods and procedures[J]. SPE Drilling & Completion, 2009, 24(1):104-114. [19] ASTM C1608-06. Standard test method for chemical shrinkage of hydraulic cement paste[S]. [20] 董广超. 固井水泥浆体积收缩对环空气窜的影响研究[D]. 成都: 西南石油大学, 2016.DONG Guangchao. A study on the effect of volume shrinkage of cemented water mud on annular air runoff[D]. Chengdu: SouthWest Petroleum University, 2016. [21] 陈建东,孟浩. 主要国家海洋天然气水合物研发现状及我国对策[J]. 世界科技研究与发展,2013,35(4):560-564.CHEN Jiandong, MENG Hao. Marine gas hydrate research and development status of main countries and countermeasures of our country[J]. World Sci-Tech R & D, 2013, 35(4):560-564. -