Controlled Release of Calcium Chloride from Compounded Waterglass-Calcium Chloride Lost Circulation Material
-
摘要: 水玻璃-氯化钙体系是常用的油井堵漏材料,但是水玻璃和氯化钙一接触即快速反应,只能采用双液法进行施工,工序复杂。因此拟对氯化钙进行控释,以期能够将水玻璃-氯化钙混合同时泵注,简化施工。该研究通过使用树脂体系对氯化钙进行包裹完成氯化钙的控释。通过改变体系中氯化钙的加量、交联剂的加量以及单体的种类及配比,考察以上3种因素对控释效果的影响。研究发现,通过树脂对氯化钙进行包裹时,氯化钙与单体的质量比为1∶4、交联剂加量为6%,可将水玻璃-氯化钙体系失去流动性时间延长至105 min。将已包裹氯化钙的树脂粉末进行二次包裹时,氯化钙与单体的质量比为1∶2、一次包裹二次包裹交联剂加量均为6%时,可将水玻璃-氯化钙体系失去流动性时间延长至110 min。在二次包裹的树脂体系中加入氯化钠,可将体系失去流动性时间延长至180 min。通过红外光谱和SEM谱图分析发现,吸水树脂通过减少氯化钙与水玻璃的接触面积来减缓反应的进行,树脂本身不参与水玻璃与氯化钙的反应进程。
-
关键词:
- 氯化钙-水玻璃复合堵漏体系 /
- 氯化钙 /
- 控释 /
- 树脂
Abstract: Waterglass-calcium chloride compound is a commonly used lost circulation material. When use this material to control mud losses, the waterglass reacts instantly with calcium chloride as soon as the two chemicals are brought together. Thus, mud loss control with waterglass-calcium chloride compound can only be performed in a complicated “two-liquids” method. To make things easy, the release of calcium chloride from the compound lost circulation material is controlled to try to pump the mixture of waterglass and calcium chloride in one operation. In this study, a resin is used to wrap calcium chloride for controlled release of calcium chloride. By changing the quantities of calcium chloride and the crosslinking agent as well as the type and ratio of the monomers, the effects of these factors on the release of calcium chloride can be understood. The study shows that when wrapping calcium chloride with the resin, if the mass ratio of calcium chloride and the monomer is 1∶4 and the concentration of the crosslinking is 6%, then the time for the waterglass-calcium chloride system to lose fluidity can be extended to 105 min. When the powdered resin wrapping up calcium chloride is rewrapped, if the mass ratio of calcium chloride and the monomer is 1∶2, and the concentrations of the crosslinking agent are both 6% in the first and secondary wrapping, the time for the waterglass-calcium chloride system to lose fluidity can then be extended to 115 min. If sodium chloride is added in the secondary wrapping, then the time for the system to lose fluidity can be extended to 180 min. Analyses with IR spectrum and SEM show that the water-absorbing resin retards the reaction between calcium chloride and waterglass by reducing the contact area between the two chemicals, while the resin itself does not participate in the reaction between waterglass and calcium chloride. -
表 1 氯化钙与AM质量比对实验现象的影响
氯化钙∶AM 实验现象 1∶1 无论固体物质添加顺序如何,
固体物质无法全部溶解3∶4 需要先溶解交联剂,再加入氯化钙进行
溶解,否则固体溶解不完全1∶2 固体物质可全部溶解 1∶4 固体物质可全部溶解 表 2 实验现象与吸水树脂中氯化钙含量的关系
吸水树脂粉末中氯化钙的质量
占水玻璃质量的百分比/%实验现象 1 24 h后,体系仍具有
较强流动性3 搅拌均匀后,静置1 min,
体系基本失去流动性5 搅拌均匀后,
体系失去流动性表 3 体系失去流动性时间与氯化钙、树脂单体质量比的关系
氯化钙与树脂单体质量比 体系失去流动性时间/min 3∶4 1 1∶2 3 1∶4 40 表 4 不同交联剂加量完成二次包裹 树脂粉末与水玻璃反应时间
一次包裹
交联剂/%二次包裹
交联剂/%体系失去流动性
时间/min3.0 3.0 40 4.0 3.0 70 5.0 3.0 75 4.0 5.0 75 5.0 5.0 100 5.5 5.5 105 6.0 6.0 110 -
[1] 张晋霞. 水玻璃堵漏剂的应用[J]. 山西建筑,2001,27(3):83-84.ZHANG Jinxia. Research and application of sodium silicate leaking stoppage agent[J]. Shanxi Architecture, 2001, 27(3):83-84. [2] 张峰博,杨建辉,金炜枫,等. 水玻璃-氯化钙固化砂土渗透系数的变化规律试验研究[J]. 科技通报,2019,35(1):143-146,156.ZHANG Fengbo, YANG Jianhui, JIN Weifeng, et al. Experimental study on the variation law of permeability coefficient of sodium silicate & calcium chloride solidified Soil[J]. Bulletin of Science and Technology, 2019, 35(1):143-146,156. [3] HASHOLT M T, JENSEN O M, KOVLER K, et al. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?[J]. Construction and Building Materials, 2012, 31:226-230. doi: 10.1016/j.conbuildmat.2011.12.062 [4] MECHTCHERINE V, SECRIERU E, SCHRÖFL C. Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars-development of yield stress and plastic viscosity over time[J]. Cement and Concrete Research, 2015, 67:52-65. doi: 10.1016/j.cemconres.2014.07.003 [5] POURJAVADI A, FAKOORPOOR S M, HOSSEINI P, et al. Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles[J]. Cement and Concrete Composites, 2013, 37:196-204. doi: 10.1016/j.cemconcomp.2012.10.005 [6] SCHRÖFL C, MECHTCHERINE V, GORGES M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage[J]. Cement and Concrete Research, 2012, 42(6):865-873. doi: 10.1016/j.cemconres.2012.03.011 [7] WANG F Z, YANG J, CHENG H, et al. Study on the mechanism of desorption behavior of saturated sap in concrete[J]. ACI Materials Journal, 2015, 112(3):463-469. [8] MIAO C W, TIAN Q, SUN W, et al. Water consumption of the early-age paste and the determination of "time-zero" of self-desiccation shrinkage[J]. Cement and Concrete Research, 2007, 37(11):1496-1501. doi: 10.1016/j.cemconres.2007.08.005 [9] 李明,王育江,王文彬,等. 高吸水树脂在水泥基材料中的早期吸水与释水行为[J]. 硅酸盐学报,2016,44(11):1595-1601.LI Ming, WANG Yujiang, WANG Wenbin, et al. Early-Age water absorption and release behavior of superabsorbent polymers in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2016, 44(11):1595-1601. [10] 辛海鹏,吴达华,张明辉,等. 固井用防水窜自愈合剂的探索[J]. 钻井液与完井液,2020,37(2):221-225.XIN Haipeng, WU Dahua, ZHANG Minghui, et al. Explore and study on well cementing anti-water-channeling self-healing agent[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):221-225. [11] 孙一凡. 超声波聚合法制备聚丙烯酸钠高吸水树脂及其吸水性能研究[J]. 科技创新与应用,2021,11(27):100-102.SUN Yifan. Preparation of sodium polyacrylate superabsorbent resin by ultrasonic polymerization and its water absorption properties[J]. Technology Innovation and Application, 2021, 11(27):100-102. [12] ZHANG M, YANG P, LAN G, et al. High crosslinked sodium carboxyl methylstarch-g-poly (acrylic acid-co-acrylamide) resin for heavy metal adsorption: its characteristics and mechanisms[J]. Environmental Science and Pollution Research, 2020, 27:38617-38630. doi: 10.1007/s11356-020-09945-0 [13] 关洪亮,陈智堃,雍定利,等. 有机/无机复合高吸水树脂耐盐性和防潮性能研究[J]. 化工新型材料,2019,47(9):127-133.GUAN Hongliang, CHEN Zhikun, YONG Dingli, et al. Salt-tolerating and moisture-resisting properties of organic/inorganic superabsorbent resin[J]. New Chemical Materials, 2019, 47(9):127-133. [14] 宋天文,赵宇,王万冠,等. P(AA/AMPS)耐盐性高吸水树脂的合成及吸水性能[J]. 高分子通报,2015(11):71-77.SONG Tianwen, ZHAO Yu, WANG Wanguan, et al. Synthesis and water absorbency performance of Salt-Resistant superabsorbents based upon the poly(acry acid-co-2-acrylamide-2-methyl propane sulfonic acid)[J]. Chinese Polymer Bulletin, 2015(11):71-77. [15] RAKHSH F, GOLCHIN A. Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content[J]. Applied Clay Science, 2018, 163:214-226. doi: 10.1016/j.clay.2018.07.031 -