Sealing Integrity of Cement Sheath under the Condition of CO2 Corrosion–Stress Coupling
-
摘要: CO2地质封存过程中,与地层围岩中的水反应后腐蚀着固井水泥环,腐蚀损伤和套管内压(应力)耦合作用极大地影响着水泥环的密封完整性。基于CO2腐蚀实验,获得不同腐蚀程度水泥石材料力学性能参数,采用混凝土损伤塑性(CDP)本构模型和Mohor-Coulomb准则描述腐蚀前后水泥环的应力-应变行为,利用ABAQUS软件建立考虑CO2腐蚀与应力耦合作用的井筒组合体(套管-水泥环-地层围岩)有限元分析模型,分析和探讨了套管内压和腐蚀时间对水泥环完整性的影响。结果表明,较高套管内压下,井筒水泥环发生弹塑性变形,出现结构损伤,套管与水泥环界面易形成微间隙;受腐蚀和套管内压的耦合作用,水泥环更易于出现完整性失效问题,相比较于未腐蚀水泥环,腐蚀水泥环受压后径向应力、等效塑性应变、微间隙以及拉伸和压缩损伤均较大,与之相反,塑性半径是减小的;微间隙与拉伸和压缩损伤受腐蚀时间的影响不明显。Abstract: In geologically sequestrating CO2, the reaction between the CO2 and the water in the confining rocks produces a chemical that causes the cement sheath to corrode, the coupling of the corrosion damage and the pressure (stress) inside the casing string greatly affects the seal integrity of the cement sheath. In CO2 corrosion test, the mechanical parameters of the set cement with different corrosion severities are obtained. The stress-strain behavior of the cement sheath before and after corrosion is described using the concrete damaged plasticity (CDP) constitutive model and the Mohor-Coulomb criterion. Using the ABAQUS software, a finite element analysis model for the wellbore assembly (casing-cement sheath-confining formation rocks) is established taking into account the coupling of CO2 corrosion and stress. The effects of internal pressure of the casing and corrosion time on the integrity of cement sheath are investigated. It is found that at high internal pressure of casing, the cement sheath undergoes elastic-plastic deformation, structural damage is found in the cement sheath, and micro-gaps are easy to be generated in the interfaces between the casing and the cement sheath. The coupled action of corrosion and internal pressure of casing causes the integrity of the cement sheath to fail easily. Compared with the cement sheath that undergoes no corrosion, the cement sheath with corrosion damage after being pressurized has higher radial stress, higher equivalent plastic strain, wider micro-gap and more serious tensile and compressive damages. On the other hand, the plastic radius decreases, and the corrosion time does not significantly affect the micro-gap and the tensile and compressive damage.
-
Key words:
- Cement sheath /
- CO2 corrosion /
- Seal integrity /
- Plastic deformation /
- Micro-gap
-
表 1 井筒各部分材料的主要特征参数
材料 ρ/
g·cm−3弹性模量/
MPa泊松比 C/
MPa$\varphi $/(°) 套管 7.85 2.1000×105 0.290 地层围岩 2.40 2.6133×104 0.224 16 36 水泥环(未腐蚀) 1.90 5.8256×103 0.159 腐蚀水
泥环15 d 1.90 1.2851×104 0.236 10.080 15.874 30 d 1.90 1.1400×104 0.261 7.631 20.200 60 d 1.90 9.2487×103 0.167 12.390 4.270 -
[1] WASCH L J, KOENEN M, WOLLENWEBER J, et al. Sensitivity of chemical cement alteration- modeling the effect of parameter uncertainty and varying subsurface conditions[J]. Greenhouse Gases Science and Technology, 2015, 5(3):323-338. doi: 10.1002/ghg.1515 [2] WISEN J, CHESNAUX R, WENDLING G, et al. Assessing the potential of cross-contamination from oil and gas hydraulic fracturing: A case study in northeastern British Columbia, Canada[J]. Journal of Environmental Management, 2019, 246:275-282. [3] WATSON T L, BACHU S. Evaluation of the potential for gas and CO2 leakage along wellbores[J]. SPE Drilling & Completion, 2009, 24(1):115-126. [4] WRONA P, RÓŻAŃSKI Z, PACH G, et al. Closed coal mine shaft as a source of carbon dioxide emissions[J]. Environmental Earth Sciences, 2016, 75(15):1139. doi: 10.1007/s12665-016-5977-7 [5] CHOINSKA M, KHELIDJ A, CHATZIGEORGIOU G, et al. Effects and interactions of temperature and stress-level related damage on permeability of concrete[J]. Cement and Concrete Research, 2007, 37(1):79-88. doi: 10.1016/j.cemconres.2006.09.015 [6] D'ANIELLO A, TÓMASDÓTTIR S, SIGFÚSSON B, et al. Modeling gaseous co2 flow behavior in layered basalts: dimensional analysis and aquifer response[J]. Groundwater, 2021, 59(5):677-693. doi: 10.1111/gwat.13090 [7] KUTCHKO B G, STRAZISAR B R, DZOMBAK D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environmental Science & Technology, 2007, 41(13):4787-4792. [8] 辜涛. 二氧化碳地质封存条件下固井水泥石腐蚀损伤与防护研究[D]. 成都: 西南石油大学, 2017.GU Tao. Study on degradation of oilwell cement and anticorrosion technology under CO2 geological storage conditions[D]. Chengdu: Southwest Petroleum University, 2017. [9] 杨广国,刘奎,曾夏茂,等. 页岩气井套管内压周期变化对水泥环密封失效的实验研究[J]. 科学技术与工程,2021,21(13):5311-5317. doi: 10.3969/j.issn.1671-1815.2021.13.019YANG Guangguo, LIU Kui, ZENG Xiamao, et al. Experimental analysis and discussion on cement sheath failure caused by the varied casing internal pressure in shale gas wells[J]. Science Technology and Engineering, 2021, 21(13):5311-5317. doi: 10.3969/j.issn.1671-1815.2021.13.019 [10] 高德利,窦浩宇,董雪林. 二氧化碳注入条件下井筒水泥环完整性若干研究进展[J]. 延安大学学报(自然科学版),2022,41(3):1-9,17.GAO Deli, DOU Haoyu, DONG Xuelin. Research progress in wellbore cement sheath integrity under conditions of CO2 injection and storage[J]. Journal of Yanan University(Natural Science Edition) , 2022, 41(3):1-9,17. [11] 陈思宇. 套管内载荷作用下水泥环力学性能分析[D]. 大庆: 东北石油大学, 2016.CHEN Siyu. Research on cement sheath mechanical properties under the casing internal loading[D]. Daqing: Northeast Petroleum University, 2016. [12] XI Y, LI J, TAO Q, et al. Experimental and numerical investigations of accumulated plastic deformation in cement sheath during multistage fracturing in shale gas wells[J]. Journal of Petroleum Science and Engineering, 2020, 187:106790. doi: 10.1016/j.petrol.2019.106790 [13] 范明涛,李社坤,李军,等. 多级压裂水泥环界面密封失效数值模拟[J]. 科学技术与工程,2019,19(24):107-112. doi: 10.3969/j.issn.1671-1815.2019.24.017FAN Mingtao, LI Shekun, LI Jun, et al. Numerical simulation of interface seal failure of cement sheath during multi-stage fracturing[J]. Science Technology and Engineering, 2019, 19(24):107-112. doi: 10.3969/j.issn.1671-1815.2019.24.017 [14] 郭辛阳,宋雨媛,步玉环,等. 基于损伤力学变内压条件下水泥环密封完整性模拟[J]. 石油学报,2020,41(11):1425-1433. doi: 10.7623/syxb202011012GUO Xinyang, SONG Yuyuan, BU Yuhuan, et al. Simulation of seal integrity of cement sheath under variable internal casing pressure based on damage mechanics[J]. Acta Petrolei Sinica, 2020, 41(11):1425-1433. doi: 10.7623/syxb202011012 [15] 郭辛阳,步玉环,李强. 变内压条件下膨胀水泥性能对井筒完整性的影响[J]. 钻井液与完井液,2018,35(2):98-103. doi: 10.3969/j.issn.1001-5620.2018.02.016GUO Xinyang, BU Yuhuan, LI Qiang. Effects of properties of expansive cement on wellbore integrity under changing casing internal pressure[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):98-103. doi: 10.3969/j.issn.1001-5620.2018.02.016 [16] 李早元,郭小阳,韩林,等. 油井水泥石在围压作用下的力学形变行为[J]. 天然气工业,2007,27(9):62-64. doi: 10.3321/j.issn:1000-0976.2007.09.019LI Zaoyuan, GUO Xiaoyang, HAN Lin, et al. Deformation behavior of oil-well cement stone under confining pressure[J]. Natural Gas Industry, 2007, 27(9):62-64. doi: 10.3321/j.issn:1000-0976.2007.09.019 [17] 韩昌瑞. 有限变形理论及其在岩土工程中的应用[D]. 武汉: 中国科学院武汉岩土力学研究所, 2009.HAN Changrui. The theory of finite deformation and its application in geotechnical engineering[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2009. [18] 张田. 典型混凝土模型在单调和循环荷载下数值模拟应用研究[D]. 昆明: 昆明理工大学, 2020.ZHANG Tian. Evaluation and application of typical material models used in FE modelling under monotonic and cyclic loading conditions[D]. Kunming: Kunming University of Science and Technology, 2020. [19] 曾宇,胡良明. ABAQUS混凝土塑性损伤本构模型参数计算转换及校验[J]. 水电能源科学,2019,37(6):106-109.ZENG Yu, HU Liangming. Calculation transformation and calibration of ABAQUS concrete plastic damage constitutive model[J]. Water Resources and Power, 2019, 37(6):106-109. [20] 杨同,徐川,王宝学,等. 岩土三轴实验中的粘聚力与内摩擦角[J]. 中国矿业,2007,16(12):104-107. doi: 10.3969/j.issn.1004-4051.2007.12.032YANG Tong, XU Chuan, WANG Baoxue, et al. The cohesive strength and the friction angle in rock-soil triaxial rests[J]. China Mining Magazine, 2007, 16(12):104-107. doi: 10.3969/j.issn.1004-4051.2007.12.032 [21] 刘健. 油气井水泥石力学行为本构方程与完整性评价模型研究[D]. 成都: 西南石油大学, 2013.LIU Jian. Research on constitutive equations and evaluation models of mechanical integrity of cement stone[D]. Chengdu: Chengdu: Southwest Petroleum University Doctoral Dissertation, 2013. -