Development of An Epoxy Phosphate Retarder and A High Temperature Cement Slurry Resistant to 220 °C
-
摘要: 针对油井水泥常用缓凝剂在200 ℃以上稠化时间不稳定问题,笔者以官能团和聚合物功能结构为基础,对抗高温缓凝剂进行分子结构设计。以AMPS、SAS、NVP、AM和环氧丙基磷酸5种单体制备了一种五元抗高温缓凝剂NPAAS-1。采用红外光谱、热重分析以及核磁共振H谱对NPAAS-1进行表征。结果表明,缓凝剂NPAAS-1为预期产物,300 ℃时失重仅为22.30%。通过其性能评价可知,NPAAS-1在200 ℃以上具有很好的缓凝性能,且稠化时间与加量呈线性关系。在 220 ℃下,缓凝剂加量为3.5%时,稠化时间为297 min;加量为4.5%时,稠化时间为530 min。可以实现对超高温环境下水泥水化速率的有效控制。Abstract: In designing the molecular structures of cement slurry retarders, monomers with the target groups are selected to produce retarders which can control the thickening time of oil well cement slurries at stable values at temperatures above 200 °C. The molecular structure is designed on the basis of functional structure of the polymers. A high temperature penta-polymer retarder NPAAS-1 is developed based on the molecular structure design clue with five monomers, which are AMPS, SAS, NVP, AM and epoxypropyl phosphate. Characterization of the molecular structure of NPAAS-1 shows that the final product is the expected product. Weight loss on heating of NPAAS-1 at 300 °C is only 22.30%. NPASS-1 has good retarding capacity at temperatures above 200 °C, and the thickening time of the cement slurry is in a linear relationship with the concentration of NPSSA-1. A cement slurry of moderate density working normally at 220 °C was formulated with NPAAS-1 as the retarder, HTFLA-A as the filter loss reducer, HTDA-6 as the dispersant and HTSA-2 as the suspending agent. At concentration of 3.5% NPAAS-1, the thickening time of the cement slurry is 297 min; while at concentration of 4.5%, the thickening time becomes 530 min. Using this retarder NPAAS-1, the hydration speed of cement can be effectively controlled at ultra-high temperatures.
-
表 1 缓凝剂NPAAS-1合成工艺条件
影响因素 T反应/ ℃ t反应/h 单体浓度/% pH 数值 130 14 50 6 表 2 温度对含NPAAS-1 缓凝性能的影响
NPAAS-1/% T/℃ P/MPa t稠化/min 3.5 215 100 349 3.5 220 100 297 3.5 225 100 245 -
[1] 于永金,夏修建,王治国,等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and Ultra-Deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003 [2] 凌勇,于倩倩,马如然,等. 固井用高温缓凝剂的研究与应用[J]. 钻井液与完井液,2023,40(2):209-215. doi: 10.12358/j.issn.1001-5620.2023.02.009LING Yong, YU Qianqian, MA Ruran, et al. Study and application of a high temperature retarding agent for well cementing[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):209-215. doi: 10.12358/j.issn.1001-5620.2023.02.009 [3] WU W C, YU X R, HU A B, et al. Amphoteric retarder for long-standing cementing: Preparation, properties and working mechanism[J]. Geoenergy Science and Engineering, 2023, 223:211524. doi: 10.1016/j.geoen.2023.211524 [4] 夏修建,于永金,陈洲洋,等. 一种新型超高温固井水泥浆缓凝剂[J]. 天然气工业,2021,41(9):98-104. doi: 10.3787/j.issn.1000-0976.2021.09.010XIA Xiujian, YU Yongjin, CHEN Zhouyang, et al. A novel retarder for ultra-high temperature cementing slurry[J]. Natural Gas Industry, 2021, 41(9):98-104. doi: 10.3787/j.issn.1000-0976.2021.09.010 [5] 李晓岚,郑志军,郭鹏. 高温油井水泥缓凝剂ZRT-1的合成及性能[J]. 钻井液与完井液,2020,37(1):93-96.LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance evaluation of high temperature oil well cement retarder ZRT-1[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):93-96. [6] 雷霆,邹亦玮,王义昕,等. 一种抗高温固井用缓凝剂XCT600的研制[J]. 辽宁化工,2023,52(4):509-512. doi: 10.3969/j.issn.1004-0935.2023.04.013LEI Ting, ZOU Yiwei, WANG Yixin, et al. Development of a retarder XCT600 for high temperature cementing[J]. Liaoning Chemical Industry, 2023, 52(4):509-512. doi: 10.3969/j.issn.1004-0935.2023.04.013 [7] 辛颖,姜伟,巩明月,等. 超高温缓凝剂研究进展[J]. 现代化工,2023,43(3):41-45,50.XIN Ying, JIANG Wei, GONG Mingyue, et al. Research progress on ultra-high temperature oil well cement retarder[J]. Modern Chemical Industry, 2023, 43(3):41-45,50. [8] 刘建,张泽宇,魏浩光,等. 新型油井水泥缓凝剂的研制[J]. 钻井液与完井液,2022,39(5):615-621. doi: 10.12358/j.issn.1001-5620.2022.05.013LIU Jian, ZHANG Zeyu, WEI Haoguang, et al. Development of new oil well cement retarder[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):615-621. doi: 10.12358/j.issn.1001-5620.2022.05.013 -