Offshore Gas Hydrate Completion Fluid System Construction and Performance Evaluation
-
摘要: 砾石充填防砂方式是解决水合物储层开采出砂的有效手段,但与之配套的完井液体系面临水合物二次生成和砾石充填效率不高等技术难题。结合南海常规油气藏开发完井经验,考虑水合物储层的特殊性,构建了不同水合物完井液体系,评价了体系性能。研究结果表明,常用的热力学抑制剂乙二醇和盐类需要比较高的添加量才能达到比较好的抑制效果,但较高的完井液密度无法满足现场施工要求,需要替代使用动力学抑制剂;使用自行研发的SYZ-2动力学抑制剂配制的完井液体系能够满足现场各项指标要求,取得比较好的完井效果。优选出完井液配方为:盐水 + 2.5% PF-HCS + 2.0% PF-CA101HT + 6.5% NaCl + 1.0% SYZ-2。Abstract: Gravel packing is an effective method for preventing sand production during the exploitation of gas hydrate reservoirs. However, the accompanying completion fluid system faces technical challenges, such as secondary hydrate formation and low gravel packing efficiency. Therefore, this paper combines the experience of conventional oil and gas reservoir development in the South China Sea, considers the particularity of gas hydrate reservoirs, constructs different gas hydrate completion fluid systems, and evaluates the complete performance of these systems based on laboratory experiments and numerical simulation techniques. The research results show that commonly used thermodynamic inhibitors such as ethylene glycol and salts require relatively high addition amounts to achieve good inhibition effects, but the higher completion fluid density cannot meet the on-site construction requirements, so kinetic inhibitors need to be used as substitutes. The experimental tests and numerical simulation results show that the completion fluid system formulated with the self-developed SYZ-2 kinetic inhibitor can meet the requirements of various on-site indicators and achieve good completion effects. After comparative analysis, the optimal completion fluid is brine+2.5%PF-HCS+2.0%PF-CA101HT+6.5%NaCl+ 1.0%SYZ-2.
-
Key words:
- Gas hydrate /
- Well-completion /
- Gravel filling /
- Inhibitor
-
表 1 不同配方完井液与清水、盐水的腐蚀速率
完井液 钢片
编号腐蚀前
质量/g腐蚀后
质量/g腐蚀速率/
mm·a−1清水 1 10.8472 10.8463 0.052 盐水 2 10.8021 10.8004 0.065 1#配方 3 10.9265 10.9257 0.037 2#配方 4 10.0212 10.0205 0.028 3#配方 5 10.8964 10.8957 0.035 4#配方 6 10.7692 10.7684 0.036 表 2 添加NaCl后的3#配方完井液密度和流变性能
配方 NaCl/
%ρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
Pa3-1# 7.5 1.05 1.0 1 0 3-2# 7.0 1.05 1.0 1 0 3-3# 7.0 1.06 3.5 3 0.5 3-4# 6.5 1.06 1.5 1 0.2 -
[1] WANG R, LIAO B, WANG J T, et al. Microscopic molecular insights into methane hydrate growth on the surfaces of clay minerals: experiments and molecular dynamics simulations[J]. Chemical Engineering Journal, 2023, 451, Part 3: 138757. [2] LIAO B, WANG J T, HAN X P, et al. Microscopic molecular insights into clathrate methane hydrates dissociation in a flowing system[J]. Chemical Engineering Journal, 2022, 430, Part 4: 133098. [3] 孙金声,程远方,秦绪文,等. 南海天然气水合物钻采机理与调控研究进展[J]. 中国科学基金,2021,35(6):940-951.SUN Jinsheng, CHENG Yuanfang, QIN Xuwen, et al. Research progress on natural gas hydrate drilling &production in the South China sea[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6):940-951. [4] WANG J L, SUN J S, WANG R, et al. Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation[J]. Fuel, 2022, 321:124012. doi: 10.1016/j.fuel.2022.124012 [5] 孙金声,廖波,王金堂,等. 分子模拟技术在天然气水合物相变机理方面的研究进展及应用[J]. 中南大学学报(自然科学版),2022,53(3):757-771.SUN Jinsheng, LIAO Bo, WANG Jintang, et al. Research progress and application of molecular simulation technology in phase transition mechanism of natural gas hydrate[J]. Journal of Central South University(Science and Technology) , 2022, 53(3):757-771. [6] LI Y L, WU N Y, GAO D L, et al. Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production[J]. Energy, 2021, 219:119585. doi: 10.1016/j.energy.2020.119585 [7] LI Y L, WU N Y, NING F L, et al. Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation[J]. Energy, 2020, 206:118030. doi: 10.1016/j.energy.2020.118030 [8] 孙金声,廖波,王金堂,等. 温度场扰动对天然气水合物相态的影响机制[J]. 中国石油大学学报(自然科学版),2023,47(5):115-121.SUN Jinsheng, LIAO Bo, WANG Jintang, et al. Mechanism on influence of temperature field perturbation on phase state of natural gas hydrate[J]. Journal of China University of Petroleum(Edition of Natural Science) , 2023, 47(5):115-121. [9] 王瑞,但春阳,张佳斌.海洋深水钻井完井液关键技术研究[J].石化技术,2024,31(2):86-88.WANG Rui,DAN Chunyang,ZHANF Jiabin. Research on key technology of completion fluid for offshore deepwater drilling[J]. Petrochemical Industry Technology, 2024, 31(2): 86-88. [10] HUO Jinhua, ZHANG Xing ,CHE Yuanjun, et al. Preparation, characterization and application of environment-friendly high density and low damage solid free completion fluids for completing HTHP oil and gas wells[J]. Geoenergy Science and Engineering, 2023, 221: 211351. [11] 林云涛.海洋深水钻井完井液关键技术研究[J].中国石油和化工标准与质量,2021,41(18):197-198.LIN Yuntao. Research on key technology of completion fluid for offshore deepwater drilling[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(18): 197-198. [12] 赵学战, 方满宗, 刘和兴, 等.南海深水水基钻完井液防水合物技术[J].探矿工程(岩土钻掘工程),2017,44(2):6-10.ZHAO Xuezhan,FANG Manzong,LIU Hexing, et al. Deepwater water-based mud hydrate inhibition technology in south China sea[J]. Drilling Engineering, 2017, 44(2): 6-10. [13] WHALEY K, PRICE-SMITH C, TWYNAM A, et al. Greater Plutonio Open Hole Gravel Pack Completions: Fluid Design and Field Application[C]// European Formation Damage Conference. Scheveningen: SPE, 2007: 107297. [14] TERAO Y, DUNCAN M K, HAY B, et al. Deepwater methane hydrate gravel packing completion results and challenges[C]//Offshore Technology Conference. Houston, Texas, 2014: OTC-25330-MS. [15] MEREY S. Well completion operations in gas hydrate reservoirs[J]. International Journal of Oil Gas and Coal Technology, 2019, 20(4):373-396. doi: 10.1504/IJOGCT.2019.099176 [16] 李彦龙,胡高伟,刘昌岭,等. 天然气水合物开采井防砂充填层砾石尺寸设计方法[J]. 石油勘探与开发,2017,44(6):961-966.LI Yanlong, HU Gaowei, LIU Changling, et al. Gravel sizing method for sand control packing in hydrate production test wells[J]. Petroleum Exploration and Development, 2017, 44(6):961-966. [17] LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. CHINA GEOLOGY, 2018, 1(1):5-16. doi: 10.31035/cg2018003 [18] 李基伟,邱康,王治法,等. 涠洲油田甲酸盐钻完井液体系适用性评价研究[J]. 海洋石油,2019,39(2):92-95.LI Jiwei, QIU Kang, WANG Zhifa, et al. A study on applicability evaluation of the formic drilling and completion fluid system in Weizhou oilfield[J]. Offshore Oil, 2019, 39(2):92-95. [19] LIAO B, WANG J T, SUN J S, et al. Microscopic insights into synergism effect of different hydrate inhibitors on methane hydrate formation: Experiments and molecular dynamics simulations[J]. Fuel, 2023, 340:127488. doi: 10.1016/j.fuel.2023.127488 [20] LIAO B, SUN J S, WANG J T, et al. Development of novel natural gas hydrate inhibitor and the synergistic inhibition mechanism with NaCl: Experiments and molecular dynamics simulation[J]. Fuel, 2023, 353:129162. doi: 10.1016/j.fuel.2023.129162 [21] LIGER K, GRISOLIA C, CRISTESCU I, et al. Overview of the TRANSAT (TRANSversal actions for tritium) project[J]. Fusion Engineering and Design, 2018, 136, Part A: 168-172. [22] KOLLMANN W. Navier-stokes turbulence: theory and analysis[M]. Cham: Springer Cham, 2019: 17-53. [23] REYNOLDS O. IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion[J]. Philosophical Transactions of the Royal Society of London A, 1895, 186:123-164. doi: 10.1098/rsta.1895.0004 [24] SHANG Z, LOU J, LI H Y. A novel Lagrangian algebraic slip mixture model for two-phase flow in horizontal pipe[J]. Chemical Engineering Science, 2013, 102:315-323. doi: 10.1016/j.ces.2013.08.017 [25] BERNARD-CHAMPMARTIN A, POUJADE O, MATHIAUD J, et al. Modelling of an homogeneous equilibrium mixture model (HEM)[J]. Acta Applicandae Mathematicae, 2014, 129(1):1-21. doi: 10.1007/s10440-013-9827-2 -