留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价

王其可 李小林 肖尧 商晓阳 刘文明 赵佳琪 郭锦棠

王其可,李小林,肖尧,等. 复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价[J]. 钻井液与完井液,2024,41(1):112-118 doi: 10.12358/j.issn.1001-5620.2024.01.013
引用本文: 王其可,李小林,肖尧,等. 复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价[J]. 钻井液与完井液,2024,41(1):112-118 doi: 10.12358/j.issn.1001-5620.2024.01.013
WANG Qike, LI Xiaolin, XIAO Yao, et al.Preparation of a high temperature- and salt-resistant styrene butadiene latex under the action of composite emulsifiers and the performance evaluation thereof[J]. Drilling Fluid & Completion Fluid,2024, 41(1):112-118 doi: 10.12358/j.issn.1001-5620.2024.01.013
Citation: WANG Qike, LI Xiaolin, XIAO Yao, et al.Preparation of a high temperature- and salt-resistant styrene butadiene latex under the action of composite emulsifiers and the performance evaluation thereof[J]. Drilling Fluid & Completion Fluid,2024, 41(1):112-118 doi: 10.12358/j.issn.1001-5620.2024.01.013

复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价

doi: 10.12358/j.issn.1001-5620.2024.01.013
基金项目: 中国石油渤海钻探工程有限公司指导项目“固体胶乳防窜剂开发”(2021D28F)。
详细信息
    作者简介:

    王其可,高级工程师,1983年生,毕业于西安石油大学计算机科学与技术专业,现从事固井工程管理工作。电话 (022)25963336;E-mail:wangqike@cnpc.com.cn。

  • 中图分类号: TE256.6

Preparation of a High Temperature- and Salt-Resistant Styrene Butadiene Latex under the Action of Composite Emulsifiers and the Performance Evaluation Thereof

  • 摘要: 针对丁苯胶乳用于固井增韧剂存在耐温性、抗盐性差,且在使用过程中需要搭配胶乳调节剂的缺点,以对苯乙烯磺酸钠、衣康酸为功能单体,OP-10、SDS复合乳化体系,改性丁苯胶乳合成了SCMBR胶乳,研究了不同乳化剂复配比例对该胶乳性质的影响。通过粒径、Zeta电位、透射电子显微镜综合表征了该胶乳的微观结构,评价了其耐热性、抗盐性。结果表明,由于磺酸基团和羧基的引入,SCMBR胶乳的耐热性能良好,热分解温度达400 ℃以上,且抗盐性能优异,TEM图像显示,SCMBR胶乳分散均匀,无团聚体。将SCMBR胶乳引入水泥,可明显改善水泥的稳定性,将游离液含量降低至1%以下,水泥浆上下层密度差缩小至0,对水泥流变性能抗折强度提升效果明显,效果最优的SCMBR-4:1改性水泥石28 d的抗折强度相较于纯水泥提高了20.5%,在深层、超深层固井中应用前景广阔。

     

  • 图  1  OP-10、SDS复配比例对SCMBR胶乳粒径的影响

    图  2  OP-10、SDS复配比例对SCMBR胶乳Zeta电位的影响

    图  3  SCMBR胶乳的TEM图像

    图  4  3种胶乳粉的热失重曲线图

    图  5  SCMBR胶乳水泥浆沉降稳定性

    图  6  不同OP-10/SDS复配比例下水泥浆的流变曲线

    图  7  不同OP-10/SDS复配比例对水泥浆流变参数的影响

    图  8  加入SCMBR对水泥石抗折强度的影响

    图  9  加入SCMBR对水泥石抗压强度的影响

    图  10  3 d固化水泥石微观结构

  • [1] LAWLER J S, WILHELM T, ZAMPINI D, et al. Fracture processes of hybrid fiber-reinforced mortar[J]. Materials and Structures, 2003, 36(3):197-208. doi: 10.1007/BF02479558
    [2] 李小林,李剑华,杨红滨,等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81.

    LI Xiaolin, LI Jianhua, YANG Hongbin, et al. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81.
    [3] 俞嘉敏,李明,靳建洲,等. 固井水泥石增韧材料的研究进展[J]. 硅酸盐通报,2017,36(9):3013-3019.

    YU Jiamin, LI Ming, JIN Jianzhou, et al. Research progress of toughening-enhancing materials in oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9):3013-3019.
    [4] 李小林,吴朝明,赵殊勋,等. 大港油田页岩油储层固井技术研究与应用[J]. 钻井液与完井液,2020,37(2):232-238. doi: 10.3969/j.issn.1001-5620.2020.02.017

    LI Xiaolin, WU Chaoming, ZHAO Shuxun, et al. Technology for cementing shale oil reservoirs in Dagang oilfield: study and application[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):232-238. doi: 10.3969/j.issn.1001-5620.2020.02.017
    [5] 雷鑫宇,张直建,焦利宾,等. 新型胶乳的合成及其在实心低密度水泥中的应用研究[J]. 精细石油化工进展,2014,15(3):1-3,18.

    LEI Xinyu, ZHANG Zhijian, JIAO Libin, et al. Synthesis of a novel latex and its application in solid low-density cement[J]. Advances in Fine Petrochemicals, 2014, 15(3):1-3,18.
    [6] 郭锦棠,王泽辉,杜江波,等. 由两种不同功能单体制备的油井水泥胶乳性能评价[J]. 天津大学学报(自然科学与工程技术版),2019,52(8):843-848.

    GUO Jintang, WANG Zehui, DU Jiangbo, et al. Performance evaluation of oil well cement latexes prepared with two different functional monomers via emulsion polymerization[J]. Journal of Tianjin University (Science and Technology), 2019, 52(8):843-848.
    [7] 杨凯麟,康梦瑶,耿宏庆,等. 水相pH和Na+对微晶纤维素与猪油的Pickering乳液稳定性的影响[J]. 食品工业科技,2022,43(20):87-96.

    YANG Kailin, KANG Mengyao, GENG Hongqing, et al. Effect of aqueous phase pH and Na+ on the stability of microcrystalline cellulose-lard Pickering emulsion[J]. Science and Technology of Food Industry, 2022, 43(20):87-96.
    [8] 赵江婷,程芳琴,杨凤玲,等. CFB炉内脱硫石灰石的粒径分布及热分解行为[J]. 煤炭转化,2018,41(4):34-41.

    ZHAO Jiangting, CHENG Fangqin, YANG Fengling, et al. Particle size distribution and thermal decomposition behavior of limestone for desulfurization of CFB[J]. Coal Conversion, 2018, 41(4):34-41.
    [9] 余宗学,梁灵,何毅,等. 新型抗温抗酸含磺酸基咪唑啉缓蚀剂的合成及其性能[J]. 材料保护,2015,48(5):27-30,38. doi: 10.16577/j.cnki.42-1215/tb.2015.05.008

    YU Zongxue, LIANG Ling, HE Yi, et al. Synthesis of a novel corrosion inhibitor with good endurance against high temperature and acid and evaluation of its inhibition performance for steel[J]. Materials Protection, 2015, 48(5):27-30,38. doi: 10.16577/j.cnki.42-1215/tb.2015.05.008
    [10] 张新贵,孔新民,王美洁,等. 固井水泥浆胶乳的合成及性能评价[J]. 长江大学学报(自科版),2016,13(23):49-53,6. doi: 10.16772/j.cnki.1673-1409.2016.23.011

    ZHANG Xingui, KONG Xinmin, WANG Meijie, et al. Synthesis and performance evaluation of latex for cement slurry[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(23):49-53,6. doi: 10.16772/j.cnki.1673-1409.2016.23.011
    [11] 王爽. 耐温耐盐降滤失剂的合成及性能测试[D]. 青岛: 中国石油大学(华东), 2015.

    WANG Shuang. Synthesis and performance test of high temperature-resistant and salt-resisting fluid loss agent[D]. Qingdao: China University of Petroleum (East China), 2015.
    [12] ZHAI W Z, WANG C Y, YAO X, et al. Characteristics of polycarboxylate-based dispersant suitable for medium and low temperature oil well cementing[J]. Construction and Building Materials, 2021, 290:123239. doi: 10.1016/j.conbuildmat.2021.123239
    [13] FAN J J, GUO J T, CHEN D, et al. Effects of submicron core-shell latexes with different functional groups on the adsorption and cement hydration[J]. Construction and Building Materials, 2018, 183:127-138. doi: 10.1016/j.conbuildmat.2018.06.079
    [14] SOWOIDNICH T, RACHOWSKI T, RÖßLER C, et al. Calcium complexation and cluster formation as principal modes of action of polymers used as superplasticizer in cement systems[J]. Cement and Concrete Research, 2015, 73:42-50. doi: 10.1016/j.cemconres.2015.01.016
    [15] TIAN Y, JIN X Y, JIN N G, et al. Research on the microstructure formation of polyacrylate latex modified mortars[J]. Construction and Building Materials, 2013, 47:1381-1394. doi: 10.1016/j.conbuildmat.2013.06.016
    [16] 张易航,许明标. 水泥石改性增韧研究进展[J]. 应用化工,2019,48(9):2198-2202,2207. doi: 10.16581/j.cnki.issn1671-3206.20190613.030

    ZHANG Yihang, XU Mingbiao. Review of modification and toughening-enhancing in cement[J]. Applied Chemical Industry, 2019, 48(9):2198-2202,2207. doi: 10.16581/j.cnki.issn1671-3206.20190613.030
    [17] 张颖,李俊莉,徐杰,等. 胶乳水泥微观研究[J]. 精细石油化工进展,2018,19(4):16-20, 40. doi: 10.3969/j.issn.1009-8348.2018.04.005

    ZHANG Ying, LI Junli, XU Jie, et al. Research on microscope of latex cement[J]. Advances in Fine Petrochemicals, 2018, 19(4):16-20, 40. doi: 10.3969/j.issn.1009-8348.2018.04.005
  • 加载中
图(10)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-25
  • 刊出日期:  2024-01-30

目录

    /

    返回文章
    返回