Development and Performance Evaluation of a High Performance Drilling Fluid Viscosifier
-
摘要: 为了解决钻井液用增黏剂高温高盐易降解失效的问题,以两性离子单体N-甲基二烯丙基丙磺酸(MAPS)、甲基丙烯酰胺(MAC)、N-乙烯基吡咯烷酮(NVP)为聚合单体,以偶氮二异丁脒盐酸盐(AIBA)为引发剂,采用自由基共聚法合成了高性能增黏剂DV-1。通过正交实验对合成过程中的主要影响因素进行了考察,确定了最佳合成条件:反应温度为50 ℃,单体浓度为40%,引发剂用量为0.4%,反应时间为4 h。利用FTIR,1H-NMR,TG-DTA等方法对DV-1进行了表征测试,并对产物的增黏性能、抗高温抗盐性能及长效性能等进行了评价。评价结果显示,1%的DV-1水溶液表观黏度可达44.7 mPa·s。180 ℃、16 h高温老化后,溶液黏度保持率高达53.2%;DV-1对高浓度盐离子的耐受性能较好。经180 ℃老化72 h和120 h后,溶液黏度保持率能够达到50.5%和40.7%,长效性能优异。DV-1的半致死浓度EC50值为30 200 mg·L−1,符合水基钻井液在海域的排放标准。通过观察DV-1在溶液中的空间立体形态及对Zeta电位的数据分析,探讨了聚合物起效机理,DV-1的抗温性能主要归因于分子结构中稳定的主链及侧链刚性基团,两性离子结构抑制了侧链的持续卷曲,提升了DV-1的抗盐性能。Abstract: A high performance viscosifier DV-1 has been developed to solve the problem of degradation and losing effectiveness of drilling fluid viscosifiers in high temperature and high salinity conditions. VD-1 is synthesized through free radical copolymerization with monomers such as MAPS, MAC and NVP. The initiator of the polymerization reaction is AIBA. The optimal reaction condition, determined through orthogonal experiment method, is as this: reaction temperature is 50 ℃, concentration of the monomers is 40%, concentration of initiator is 0.4%, and reaction time is 4 h. The reaction product was characterized using FTIR, 1H-NMR and TG-DTA, and the viscosifying capacity, high temperature high salinity performance and the ling-term effectiveness of the synthesized product were evaluated. The evaluation experimental results show that 1% water solution of DV-1 has apparent viscosity of 44.7 mPa∙s. After aging at 180 ℃ for 16 h, the viscosity of the water solution is still maintained at 53.2% of its original viscosity. DV-1 is resistant to the contamination of salts. DV-1 also has good long-term effectiveness; after aging at 180 ℃ for 72 h and 120 h, the viscosity of the solution is still maintained at 50.5% and 40.7% of its original viscosity. DV-1 has EC50 of 30 200 mg∙L−1, meeting the standard of discharge in offshore area. The viscosifying mechanisms of DV-1 are studied by observing the spatial 3D morphology and by analyzing the Zeta potential of DV-1 in solution, it is concluded that DV-1 viscosifies in solution because the molecules of DV-1 have stable main chains and rigid side chains, the amphoteric ionic structure inhibits the continual curling of the side chains, thus effectively improving the salt resistant performance of DV-1 as a viscosifier.
-
Key words:
- Drilling fluid /
- Viscosifier /
- High temperature resistant /
- Salt resistant /
- Mechanisms of taking effect
-
表 1 L9(34)正交实验
水平 因素 A B C D 单体浓度/
%反应温度/
℃引发剂用量/
%反应时间/
h1 30 50 0.4 2 2 40 60 0.6 4 3 50 70 0.8 6 表 2 正交实验结果
实验序号 A B C D AV/mPa·s 1 30 50 0.4 2 41.8 2 30 60 0.6 4 40.7 3 30 70 0.8 6 34.2 4 40 50 0.6 6 44.5 5 40 60 0.8 2 42.7 6 40 70 0.4 4 41.0 7 50 50 0.8 4 40.3 8 50 60 0.4 6 39.6 9 50 70 0.6 2 34.5 K1 38.900 42.200 40.800 39.667 K2 42.733 41.000 39.900 40.667 K3 38.133 36.567 39.067 39.433 极差 4.600 5.633 1.733 1.234 最优条件 A2 B1 C1 D2 表 3 DV-1与HE300抗温性能对比
样品 T/
℃AV/
mPa·sPV/
mPa·sYP/
Pa保持率/
%DV-1 老化前 44.7 18.5 26.2 120 43.2 20.2 23.0 96.6 140 40.1 19.6 20.5 89.7 150 34.2 22.0 12.2 76.5 160 28.6 20.1 8.5 64.0 180 23.8 18.5 5.3 53.2 200 20.5 17.3 3.2 45.9 HE300 老化前 45.0 20.3 24.7 120 43.3 22.5 20.8 96.2 140 37.2 18.3 18.9 82.7 150 32.9 21.2 11.7 73.1 160 29.1 19.6 9.5 64.7 180 23.6 19.2 4.4 52.4 200 19.8 17.4 2.4 44.0 Driscal D 老化前 25.4 10.8 14.6 180 12.3 8.2 4.1 48.0 DSP-Ⅱ 老化前 14.4 7.6 6.8 180 6.1 5.5 0.6 42.4 表 4 DV-1长效性能评价
增黏剂 条件 AV/
mPa·sPV/
mPa·sYP/
Pa保持率/
%DV-1 老化前 44.7 18.5 26.2 180 ℃/72 h 22.6 20.3 2.3 50.5 180 ℃/120 h 18.2 16.7 1.5 40.7 HE300 老化前 45.0 20.3 24.7 180 ℃/72 h 21.6 19.3 2.6 48.0 180 ℃/120 h 19.8 18.2 1.8 44.0 Driscal D 老化前 25.6 10.8 14.6 180 ℃/72 h 12.1 11.2 0.9 47.3 180 ℃/120 h 8.5 8.5 0 33.2 DSP-Ⅱ 老化前 14.4 7.6 6.8 180 ℃/72 h 6.0 5.0 1.0 41.2 180 ℃/120 h 5.5 4.0 1.5 38.2 -
[1] 蒋官澄,张峰,吴江,等. 低密度无固相海水钻井液在南海西部D气田的应用[J]. 钻井液与完井液,2018,35(5):61-66.JIANG Guancheng, ZHANG Feng, WU Jiang, et al. Application of low density solids-free seawater drilling fluid in D gas field in western south China sea[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):61-66. [2] 邱春阳,周建民,张海青,等. 车古潜山油藏抗高温无固相钻井液技术[J]. 断块油气田,2020,27(3):390-393.QIU Chunyang, ZHOU Jianmin, ZHANG Haiqing, et al. Solid-free anti-temperature drilling fluid technology for buried-hill pool in Chegu block[J]. Fault-Block Oil and Gas Field, 2020, 27(3):390-393. [3] 王中华. 国内钻井液技术进展评述[J]. 石油钻探技术,2019,47(3):95-102. doi: 10.11911/syztjs.2019054WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3):95-102. doi: 10.11911/syztjs.2019054 [4] 李建军,王中义. 抗高温无固相钻井液技术[J]. 钻井液与完井液,2017,34(3):11-15.LI Jianjun, WANG Zhongyi. High temperature solid-free drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):11-15. [5] 崔鹏,杨志淑,马双政. 一种抗高温环保型低增黏提切剂[J]. 钻井液与完井液,2022,39(4):441-445. doi: 10.12358/j.issn.1001-5620.2022.04.007CUI Peng, YANG Zhishu, MA Shuangzheng. Synthesis and properties of high temperature resistant environmental protection shear strength improving agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):441-445. doi: 10.12358/j.issn.1001-5620.2022.04.007 [6] 张黎明. 我国纤维素油田化学品的应用与发展前景[J]. 纤维素科学与技术,1996,4(2):1-12. doi: 10.16561/j.cnki.xws.1996.02.001ZHANG Liming. Application and development prospect of cellulose-based oilfield chemicals in China[J]. Journal of Cellulose Science and Technology, 1996, 4(2):1-12. doi: 10.16561/j.cnki.xws.1996.02.001 [7] 杨小华. 生物质改性钻井液处理剂研究进展[J]. 中外能源,2009,14(8):41-46.YANG Xiaohua. Progress in research of modified biomass drilling fluid additive[J]. Sino-global Energy, 2009, 14(8):41-46. [8] 杨双春,王月超,潘一,等. 环保型黄原胶添加剂在石油开采中的研究应用进展[J]. 现代化工,2017,37(9):40-43,45.YANG Shuangchun, WANG Yuechao, PAN Yi, et al. Study and application of environmental friendly xanthan gum in petroleum exploitation[J]. Modern Chemical Industry, 2017, 37(9):40-43,45. [9] 邱正松,毛惠,谢彬强,等. 抗高温钻井液增黏剂的研制及应用[J]. 石油学报,2015,36(1):106-113.QIU Zhengsong, MAO Hui, XIE Binqiang, et al. Synthesis and field application of high temperature resistant viscosifying agent for drilling fluid[J]. Acta Petrolei Sinica, 2015, 36(1):106-113. [10] 董振华. 抗高温抗盐聚合物增黏剂的研制与性能评价[J]. 油田化学,2021,38(1):29-33. doi: 10.19346/j.cnki.1000-4092.2021.01.006DONG Zhenhua. Development and evaluation of temperature and salt resistant polymer viscosifier[J]. Oilfield Chemistry, 2021, 38(1):29-33. doi: 10.19346/j.cnki.1000-4092.2021.01.006 [11] 薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术,2016,44(6):67-73. doi: 10.11911/syztjs.201606011XUE Wenjia. Synthesis and properties of high temperature resistance and envi ronmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6):67-73. doi: 10.11911/syztjs.201606011 [12] 谢彬强,邱正松,郑力会. 水基钻井液用抗高温聚合物增黏剂的研制及作用机理[J]. 西安石油大学学报(自然科学版),2016,31(1):96-102.XIE Binqiang, QIU Zhengsong, ZHENG Lihui. Synthesis and effect mechanism of a high-temperature-resisting viscosifier SDKP for water-based drilling fluid[J]. Journal of Xi'an Shiyou University (Natural Science Edition) , 2016, 31(1):96-102. [13] 张现斌,李欣,陈安亮,等. 钻井液用抗高温聚合物增黏剂的制备与性能评价[J]. 油田化学,2020,37(1):1-6,16. doi: 10.19346/j.cnki.1000-4092.2020.01.001ZHANG Xianbin, LI Xin, CHEN Anliang, et al. Preparation and performance evaluation of polymeric viscosifier with thermal resistance for water-based drilling fluid[J]. Oilfield Chemistry, 2020, 37(1):1-6,16. doi: 10.19346/j.cnki.1000-4092.2020.01.001 [14] 张洋. 抗高温反相乳液增黏剂DVZ-1的研究与应用[J]. 钻井液与完井液,2017,34(4):20-25.ZHANG Yang. Research and application of high temperature inverse emulsion viscosifier DVZ-1[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):20-25. [15] 王中华. 超高温钻井液体系研究(Ⅰ)——抗高温钻井液处理剂设计思路[J]. 石油钻探技术,2009,37(3):1-7. doi: 10.3969/j.issn.1001-0890.2009.03.001WANG Zhonghua. Studies on ultra-high-temperature drilling fluid system (1): design ultra-high-temperature drilling fluid additives[J]. Petroleum Drilling Techniques, 2009, 37(3):1-7. doi: 10.3969/j.issn.1001-0890.2009.03.001 [16] 顾宗濂, 谢思琴, 周德智, 等. GB/T 15441-1995. 水质 急性毒性的测定 发光细菌法[S]. 北京: 中国标准出版社, 1995.GU Zonglian, XIE Siqin, ZHOU Dezhi, et al. GB/T 15441-1995. Water quality-determination of the acute toxicity-luminescent bacteria test[S]. Beijing: Standards Press of China, 1995. [17] 吴进孝, 黄韧, 郑琰晶, 等. GB 18420.1-2009. 海洋石油勘探开发污染物生物毒性 第1部分: 分级[S]. 北京: 中国标准出版, 2009.WU Jinxiao, HUANG Ren, ZHEN Yanjing, et al. GB 18420.1-2009. Biological toxicity for pollutants from marine petroleum exploration and exploitation-part 1: grading[S]. Beijing: Standards Press of China, 2009. -