留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面接枝C—S—H的岩沥青对高温油井水泥石力学性能的影响

王佳 张春梅 张晔 程小伟 梅开元

王佳,张春梅,张晔,等. 表面接枝C—S—H的岩沥青对高温油井水泥石力学性能的影响[J]. 钻井液与完井液,2023,40(6):806-814 doi: 10.12358/j.issn.1001-5620.2023.06.016
引用本文: 王佳,张春梅,张晔,等. 表面接枝C—S—H的岩沥青对高温油井水泥石力学性能的影响[J]. 钻井液与完井液,2023,40(6):806-814 doi: 10.12358/j.issn.1001-5620.2023.06.016
WANG Jia, ZHANG Chunmei, ZHANG Ye, et al.Effects of rock asphalt with surface grafted C—S—H on mechanical properties of set cement in high temperature wells[J]. Drilling Fluid & Completion Fluid,2023, 40(6):806-814 doi: 10.12358/j.issn.1001-5620.2023.06.016
Citation: WANG Jia, ZHANG Chunmei, ZHANG Ye, et al.Effects of rock asphalt with surface grafted C—S—H on mechanical properties of set cement in high temperature wells[J]. Drilling Fluid & Completion Fluid,2023, 40(6):806-814 doi: 10.12358/j.issn.1001-5620.2023.06.016

表面接枝C—S—H的岩沥青对高温油井水泥石力学性能的影响

doi: 10.12358/j.issn.1001-5620.2023.06.016
基金项目: 四川省科技计划省院省校合作项目“页岩气固井用天然岩沥青韧性油井水泥的研发及应用”(2021YFSY0056)。
详细信息
    作者简介:

    王佳,在读硕士研究生,1998年生。就读于西南石油大学材料科学与工程专业,主要从事高温油井水泥石增韧方面的研究。电话 18380321801;E-mail:1500419200@qq.com。

    通讯作者:

    张春梅,副教授,硕士生导师,1977年生。主要从事固井新材料研发等方面研究工作。E-mail:200531010045@swpu.edu.cn。

  • 中图分类号: TE256

Effects of Rock Asphalt with Surface Grafted C—S—H on Mechanical Properties of Set Cement in High Temperature Wells

  • 摘要: 研究了表面接枝C—S—H的岩沥青对高温油井水泥石力学性能和微观结构的影响,采用压力试验机及XRD、TG、SEM和EDS对油井水泥石的力学性能和微观结构进行了测试和表征。研究结果表明,与纯水泥石相比,掺入1%未改性岩沥青的水泥石3 d抗压强度下降了2.98%,而掺入1%表面接枝C—S—H岩沥青的水泥石3 d抗压强度提高了4.26%。物相分析和热重实验表明,表面接枝C—S—H岩沥青的加入不会引起水化产物类型的变化,而掺量为3%表面接枝C—S—H的岩沥青水泥石养护3 d的失重量比纯水泥石高1.01%,说明表面接枝C—S—H的岩沥青可以促进水泥的水化。水泥石的微观形貌和元素分析表明,未改性岩沥青在180 ℃下热解导致沥青颗粒破碎,而接枝C—S—H的岩沥青表面形成的富Si层可以避免沥青颗粒因气孔而引起破碎,使得未改性岩沥青水泥石界面处的C元素含量较接枝C—S—H的岩沥青水泥石高29.14%,未改性岩沥青水泥石基体中C元素含量较接枝C—S—H的岩沥青水泥石高13.76%。

     

  • 图  1  C—S—H的XRD图谱

    图  2  接枝前后岩沥青的红外曲线

    图  3  接枝前后岩沥青的微观形貌

    图  4  180 ℃/20.7 MPa养护不同龄期的岩沥青/水泥石抗压强度

    图  5  180 ℃/20.7 MPa养护3 d的   岩沥青/水泥石的XRD图谱

    图  6  180 ℃/20.7 MPa养护3 d的   岩沥青/水泥石的热重曲线

    图  7  180 ℃/20.7 MPa养护3 d的   岩沥青/水泥石的微观形貌图

    图  8  C-S-H-RA与水泥基体的界面结合

    图  9  180 ℃/20.7 MPa养护3 d的岩沥青/水泥石的EDS结果(图谱1~6分别对应图7中的1~3和图8中的4~6)

    表  1  180 ℃/20.7 MPa养护3 d的岩沥青/水泥石对应水化产物的失重量

    编号C—S—H/%CH/%CaCO3/%C6S6H/%总失重量/%
    R05.902.221.160.7411.03
    R15.771.981.910.7211.34
    R35.532.061.701.0611.87
    S14.831.961.400.629.69
    S35.752.481.900.8412.04
    下载: 导出CSV
  • [1] GUO X S, HU D F, LI Y P, et al. Theoretical progress and key technologies of onshore ultra-deep oil/gas exploration[J]. Engineering, 2019, 5(3):458-470. doi: 10.1016/j.eng.2019.01.012
    [2] GE Z, YAO X, WANG X J, et al. Thermal performance and microstructure of oil well cement paste containing subsphaeroidal konilite flour in HTHP conditions[J]. Construction and Building Materials, 2018, 172:787-794. doi: 10.1016/j.conbuildmat.2018.03.268
    [3] PANG X Y, QIN J K, SUN L J, et al. Long-term strength retrogression of silica-enriched oil well cement: a comprehensive multi-approach analysis[J]. Cement and Concrete Research, 2021, 144:106424. doi: 10.1016/j.cemconres.2021.106424
    [4] WEI T C, WEI F Q, ZHOU J H, et al. Formation and strengthening mechanisms of xonotlite in C3S-silica and C2S-silica powder systems under high temperature and pressure[J]. Cement and Concrete Research, 2022, 157:106812. doi: 10.1016/j.cemconres.2022.106812
    [5] ZHANG C M, CAI J X, CHENG X W, et al. Interface and crack propagation of cement-based composites with sulfonated asphalt and plasma-treated rock asphalt[J]. Construction and Building Materials, 2020, 242:118161. doi: 10.1016/j.conbuildmat.2020.118161
    [6] ZHANG C M, SONG Y L, WANG W, et al. The influence of sulfonated asphalt on the mechanical properties and microstructure of oil well cement paste[J]. Construction and Building Materials, 2017, 132:438-445. doi: 10.1016/j.conbuildmat.2016.12.014
    [7] ZHANG C M, XU H, QING L, et al. Interface characteristics of oil-well cement and rock asphalt coated by dicalcium silicate[J]. Journal of Adhesion Science and Technology, 2021, 35(9):973-992. doi: 10.1080/01694243.2020.1829319
    [8] NICOLEAU L. Accelerated growth of calcium silicate hydrates: experiments and simulations[J]. Cement and Concrete Research, 2011, 41(12):1339-1348. doi: 10.1016/j.cemconres.2011.04.012
    [9] LI J Q, ZHANG W X, XU K, et al. Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand[J]. Cement and Concrete Research, 2020, 137:106195. doi: 10.1016/j.cemconres.2020.106195
    [10] MOSHIRI A, STEFANIUK D, SMITH S K, et al. Structure and morphology of calcium-silicate-hydrates cross-linked with dipodal organosilanes[J]. Cement and Concrete Research, 2020, 133:106076. doi: 10.1016/j.cemconres.2020.106076
    [11] PEDROSA H C, REALES O M, REIS V D, et al. Hydration of Portland cement accelerated by C-S-H seeds at different temperatures[J]. Cement and Concrete Research, 2020, 129:105978. doi: 10.1016/j.cemconres.2020.105978
    [12] THEOBALD M, PLANK J. C-S-H-polycondensate nanocomposites as effective seeding materials for Portland composite cements[J]. Cement and Concrete Composites, 2022, 125:104278. doi: 10.1016/j.cemconcomp.2021.104278
    [13] ZOU F B, HU C L, WANG F Z, et al. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder[J]. Journal of Cleaner Production, 2020, 244:118566. doi: 10.1016/j.jclepro.2019.118566
    [14] ZHAO D D, KHOSHNAZAR R. Hydration and microstructural development of calcined clay cement paste in the presence of calcium-silicate-hydrate (C-S-H) seed[J]. Cement and Concrete Composites, 2021, 122:104162. doi: 10.1016/j.cemconcomp.2021.104162
    [15] American Petroleum Institute. API RP 10B-2. Recommended practice for testing well cements[S]. Washington, DC: API, 2013.
    [16] ZHANG Z H, ZHU Y C, ZHU H J, et al. Effect of drying procedures on pore structure and phase evolution of alkali-activated cements[J]. Cement and Concrete Composites, 2019, 96:194-203. doi: 10.1016/j.cemconcomp.2018.12.003
    [17] LV S T, HU L, XIA C D, et al. Surface-treated fish scale powder with silane coupling agent in asphalt for performance improvement: conventional properties, rheology, and morphology[J]. Journal of Cleaner Production, 2021, 311:127772. doi: 10.1016/j.jclepro.2021.127772
    [18] LI J, ZHANG F L, LIU Y, et al. Preparation and properties of soybean bio-asphalt/SBS modified petroleum asphalt[J]. Construction and Building Materials, 2019, 201:268-277. doi: 10.1016/j.conbuildmat.2018.12.206
    [19] LIU J, LV S T, PENG X H, et al. Improvements on performance of bio-asphalt modified by castor oil-based polyurethane: an efficient approach for bio-oil utilization[J]. Construction and Building Materials, 2021, 305:124784. doi: 10.1016/j.conbuildmat.2021.124784
    [20] LI J, YANG S, LIU Y, et al. Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt[J]. Construction and Building Materials, 2019, 218:413-423. doi: 10.1016/j.conbuildmat.2019.05.139
    [21] LIU B Q, LI J, HAN M Z, et al. Properties of polystyrene grafted activated waste rubber powder (PS-ARP) composite SBS modified asphalt[J]. Construction and Building Materials, 2020, 238:117737. doi: 10.1016/j.conbuildmat.2019.117737
    [22] LV S T, TAN L, PENG X H, et al. Experimental investigation on the performance of bone glue and crumb rubber compound modified asphalt[J]. Construction and Building Materials, 2021, 305:124734. doi: 10.1016/j.conbuildmat.2021.124734
    [23] GARCÍA LODEIRO I, MACPHEE D E, PALOMO A, et al. Effect of alkalis on fresh C-S-H gels. FTIR analysis[J]. Cement and Concrete Research, 2009, 39(3):147-153. doi: 10.1016/j.cemconres.2009.01.003
    [24] JOHN E, MATSCHEI T, STEPHAN D. Nucleation seeding with calcium silicate hydrate-a review[J]. Cement and Concrete Research, 2018, 113:74-85. doi: 10.1016/j.cemconres.2018.07.003
    [25] WANG C W, CHEN X, ZHOU W, et al. Working mechanism of nano-SiO2 sol to alleviate the strength decline of oil well cement under high temperature[J]. Natural Gas Industry B, 2019, 6(5):517-523. doi: 10.1016/j.ngib.2019.03.008
    [26] 张春梅. 沥青-油井水泥基复合材料的性能及改性机理研究[D]. 成都: 西南石油大学, 2018.

    ZHANG Chunmei. Study on the mechanical properties and modified mechanism of oil well cement-based composites toughened by asphalt[D]. Chengdu: Southwest petroleum university, 2018.
    [27] PERNITES R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72:89-103. doi: 10.1016/j.cemconcomp.2016.05.018
    [28] ZHANG W, ZOU X S, WEI F Y, et al. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement[J]. Composites Part B:Engineering, 2019, 162:500-507. doi: 10.1016/j.compositesb.2019.01.034
    [29] LUAN C Q, ZHOU Y, LIU Y Y, et al. Effects of nano-SiO2, nano-CaCO3 and nano-TiO2 on properties and microstructure of the high content calcium silicate phase cement (HCSC)[J]. Construction and Building Materials, 2022, 314(Part A): 125377.
    [30] JIANG T, GENG C Z, YAO X, et al. Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment[J]. Construction and Building Materials, 2021, 296:123701. doi: 10.1016/j.conbuildmat.2021.123701
    [31] ZHANG Y X, WANG C W, CHEN Z H, et al. Research on the strength retrogression and mechanism of oil well cement at high temperature (240 ℃)[J]. Construction and Building Materials, 2023, 363:129806. doi: 10.1016/j.conbuildmat.2022.129806
    [32] WANG C W, CHEN X, WEI X T, et al. Can nanosilica sol prevent oil well cement from strength retrogression under high temperature?[J]. Construction and Building Materials, 2017, 144:574-585. doi: 10.1016/j.conbuildmat.2017.03.221
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  47
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-18
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回