留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种综合固化和桥接性能的堵漏体系

姜旭 柳华杰 马小龙 赵建胜 苏前荣 步玉环 郭胜来

姜旭,柳华杰,马小龙,等. 一种综合固化和桥接性能的堵漏体系[J]. 钻井液与完井液,2023,40(6):798-805 doi: 10.12358/j.issn.1001-5620.2023.06.015
引用本文: 姜旭,柳华杰,马小龙,等. 一种综合固化和桥接性能的堵漏体系[J]. 钻井液与完井液,2023,40(6):798-805 doi: 10.12358/j.issn.1001-5620.2023.06.015
JIANG Xu, LIU Huajie, MA Xiaolong, et al.A lost circulation control slurry with solidifying and bridging functions[J]. Drilling Fluid & Completion Fluid,2023, 40(6):798-805 doi: 10.12358/j.issn.1001-5620.2023.06.015
Citation: JIANG Xu, LIU Huajie, MA Xiaolong, et al.A lost circulation control slurry with solidifying and bridging functions[J]. Drilling Fluid & Completion Fluid,2023, 40(6):798-805 doi: 10.12358/j.issn.1001-5620.2023.06.015

一种综合固化和桥接性能的堵漏体系

doi: 10.12358/j.issn.1001-5620.2023.06.015
基金项目: 国家自然基金“深水油气井固井水泥传质传热过程中浅层水合物稳定机理”(51974355)。
详细信息
    作者简介:

    姜旭,硕士研究生,2000年生,就读于中国石油大学(华东)油气井工程专业,研究方向为钻完井工程。电话15621010338;E-mail:s21020010@s.upc.edu.cn。

    通讯作者:

    柳华杰,副教授,博士,1986年生,毕业于中国石油大学(华东)油气井专业,现在从事固完井领域研究工作。电话15265200293;E-mail:liuhuajie@upc.edu.cn。

  • 中图分类号: TE282

A Lost Circulation Control Slurry with Solidifying and Bridging Functions

  • 摘要: 针对桥堵浆难以胶结会返吐井筒及触变水泥浆耐漏失压差能力弱,难以有效解决复杂恶性漏失的难题,在对触变水泥浆体系以及桥浆堵漏体系研究的基础上,综合桥浆堵漏和固化堵漏的优点,将二者相结合,研制了一种综合固化和桥接性能的复杂堵漏体系。通过对外加剂的研选,确定了具有良好流变性和触变性的触变水泥浆体系,其中新型触变剂LTA-1的加入对水泥浆稠化时间影响较小,且能增加抗压强度。并通过“狭缝实验”确定桥浆堵漏体系配方。最后根据稠化性能及强度评价,确定该复杂堵漏体系的配方比例为触变水泥浆∶桥浆堵漏体系=2∶1。在满足施工安全的基础上,该堵漏体系能够封堵3~5 mm裂缝块模拟的裂缝性漏失地层和6 mm滚珠模拟的大孔道漏失地层,承压强度大于14 MPa。该体系在满足施工安全的基础上,具有良好的触变性能和堵漏性能,对解决复杂地层的漏失问题起到良好的效果。

     

  • 图  1  触变剂LTA-1加量对水泥浆体流变性和触变性影响(25 ℃×0.1 MPa)

    图  2  触变剂LTA-1加量对水泥浆体流变性和触变性影响(80 ℃×0.1 MPa)

    图  3  早强剂强度发展对比实验结果(60 ℃×0.1 MPa)

    图  4  触变水泥浆体系水泥石强度发展实验结果

    图  5  该复杂堵漏体系API失水性能

    图  6  该复杂堵漏体系固化强度评价

    表  1  触变水泥浆体系基本性能

    序号配方ρ/(g·cm−3实验条件t稠化/min初始稠度/Bc流动度/cmFL/mL游离液/mLρ/(g·cm−3
    1#基础配方1.9070 ℃×30 MPa12220182800.00
    2#基础配方+0.5%GH-91.9090 ℃×50 MPa26518204400.00
    下载: 导出CSV

    表  2  25 ℃和80 ℃下水泥浆流变性及触变性

    T/℃φ600φ300φ200φ100φ6φ3静置1 min
    φ3
    静置10 min
    φ3
    252801731328118163565
    802201471147322204380
    下载: 导出CSV

    表  3  不同比例堵漏材料堵漏效果评价

    堵漏类型橡胶/
    %
    锯末/
    %
    棉纤维/
    %
    FL/mL堵漏效果
    25 ℃80 ℃
    1 mm缝3117590堵不住
    1 mm缝4216068基本堵住
    1 mm缝5211018完全堵住
    2 mm缝5211522完全堵住
    2 mm孔5211624完全堵住
    4 mm孔5212030完全堵住
    注:配方为水+8%膨润土+0.2%Na2CO3
    下载: 导出CSV

    表  4  该复杂堵漏体系堵漏配方确定实验

    1#配方∶
    2#配方
    ρ/
    g·cm−3
    流动度/
    cm
    养护不同时间
    的常温强度
    备注
    1∶11.5220无强度/24 h流动性好
    1∶21.5418无强度/24 h流动性好,有触变性
    2∶11.61196.30 MPa/15 h流动性好,有触变性
    2∶1.51.62145.50 MPa/19 h浆体太稠
    下载: 导出CSV

    表  5  该复杂堵漏体系稠化性能评价

    实验条件t稠化/min初始稠度/Bct过渡/min
    60 ℃×30 MPa209209
    80 ℃×40 MPa2501914
    90 ℃×50 MPa2601812
    110 ℃×55 MPa3121810
    下载: 导出CSV

    表  6  该复杂堵漏体系流变性及触变性能评价

    T/℃φ600φ300φ200φ100φ6φ3nK/
    Pa·sn
    静切力
    差值/Pa
    252701659845400.9470.26056
    80280142985615120.8700.24840
    下载: 导出CSV

    表  7  模拟裂缝性和大孔道漏失层的实验结果

    裂缝T/
    挤入压力/
    MPa
    击穿压力/
    MPa
    FL/
    mL
    3~5 mm缝宽3031515
    8041818
    11052224
    6 mm滚珠3021417
    8051620
    11082036
    下载: 导出CSV
  • [1] 孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638.

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638.
    [2] 赵洪波,单文军,朱迪斯,等. 裂缝性地层漏失机理及堵漏材料新进展[J]. 油田化学,2021,38(4):740-746. doi: 10.19346/j.cnki.1000-4092.2021.04.028

    ZHAO Hongbo, SHAN Wenjun, ZHU Disi, et al. Advance of fractured formation lost circulation mechanism and lost circulation materials in oil and gas wells[J]. Oilfield Chemistry, 2021, 38(4):740-746. doi: 10.19346/j.cnki.1000-4092.2021.04.028
    [3] 王涛,刘锋报,罗威,等. 塔里木油田防漏堵漏技术进展与发展建议[J]. 石油钻探技术,2021,49(1):28-33. doi: 10.11911/syztjs.2020080

    WANG Tao, LIU Fengbao, LUO Wei, et al. The technical advance and development suggestions for leakage prevention and plugging technologies in the Tarim oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1):28-33. doi: 10.11911/syztjs.2020080
    [4] 李伟,白英睿,李雨桐,等. 钻井液堵漏材料研究及应用现状与堵漏技术对策[J]. 科学技术与工程,2021,21(12):4733-4743. doi: 10.3969/j.issn.1671-1815.2021.12.001

    LI Wei, BAI Yingrui, LI Yutong, et al. Research and application progress of drilling fluid lost circulation materials and technical countermeasures for lost circulation control[J]. Science Technology and Engineering, 2021, 21(12):4733-4743. doi: 10.3969/j.issn.1671-1815.2021.12.001
    [5] 卢海川,李洋,宋元洪,等. 新型固井触变水泥浆体系[J]. 钻井液与完井液,2016,33(6):73-78. doi: 10.3969/j.issn.1001-5620.2016.06.013

    LU Haichuan, LI Yang, SONG Yuanhong, et al. A novel thixotropic well cementing slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):73-78. doi: 10.3969/j.issn.1001-5620.2016.06.013
    [6] 赵素丽. 浓度响应型水触变材料及在含水漏层堵漏技术的应用[J]. 钻井液与完井液,2022,39(4):423-429. doi: 10.12358/j.issn.1001-5620.2022.04.004

    ZHAO Suli. Study on concentration responsive water thixotropic material and plugging technology of water bearing leakage layer[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):423-429. doi: 10.12358/j.issn.1001-5620.2022.04.004
    [7] 姜林林,王瑞和,步玉环. 新型触变性水泥浆触变剂的研制[J]. 钻采工艺,2009,32(6):103-106. doi: 10.3969/j.issn.1006-768X.2009.06.032

    JIANG Linlin, WANG Ruihe, BU Yuhuan. Study on thixotropic agent of new thixotropic cement slurry[J]. Drilling & Production Technology, 2009, 32(6):103-106. doi: 10.3969/j.issn.1006-768X.2009.06.032
    [8] GUO S L, BU Y H, ZHOU A N, et al. A three components thixotropic agent to enhance the thixotropic property of natural gas well cement at high temperatures[J]. Journal of Natural Gas Science and Engineering, 2020, 84:103699. doi: 10.1016/j.jngse.2020.103699
    [9] 尤军,步玉环,姜林林. 新型油气井固井水泥浆触变剂的优选实验研究[J]. 钻采工艺,2011,34(1):75-77,118. doi: 10.3969/j.issn.1006-768X.2011.01.025

    YOU Jun, BU Yuhuan, JIANG Linlin. Optimization study on new thixotropic agents of cement slurry[J]. Drilling & Production Technology, 2011, 34(1):75-77,118. doi: 10.3969/j.issn.1006-768X.2011.01.025
    [10] 谢承斌,卢海川,李洋,等. 水泥浆触变性评价方法的探索[J]. 钻井液与完井液,2015,32(6):57-60.

    XIE Chengbin, LU Haichuan, LI Yang, et al. Study on evaluation of thixotropy of cement slurry[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):57-60.
    [11] 郭子涵,李明,杨燕,等. 近年来油井水泥降失水剂研究现状概述[J]. 现代化工,2015,35(10):49-53. doi: 10.16606/j.cnki.issn0253-4320.2015.10.012

    GUO Zihan, LI Ming, YANG Yan, et al. Current status of fluid loss reducers for oil well cement in recent years[J]. Modern Chemical Industry, 2015, 35(10):49-53. doi: 10.16606/j.cnki.issn0253-4320.2015.10.012
    [12] 邹双,熊钰丹,张天意,等. 盐膏层固井用降失水剂的研究与应用[J]. 钻井液与完井液,2021,38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017

    ZOU Shuang, XIONG Yudan, ZHANG Tianyi, et al. Study and application of fluid loss additive used in cement slurries for cementing salt-gypsum stratum[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017
    [13] 赵建胜,代清,霍锦华,等. 高温固井水泥浆用降失水剂GT-1的制备及性能[J]. 钻井液与完井液,2022,39(2):234-240. doi: 10.12358/j.issn.1001-5620.2022.02.017

    ZHAO Jiansheng, DAI Qing, HUO Jinhua, et al. Preparation and application of fluid loss additive GT-1 for high temperature cementing slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):234-240. doi: 10.12358/j.issn.1001-5620.2022.02.017
    [14] 刘学鹏,刘仍光. 油井水泥降失水剂的作用机理研究[J]. 化学研究与应用,2017,29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027

    LIU Xuepeng, LIU Rengguang. Mechanisms involved in fluid loss control of oilwell cement slurries by water-soluble polymer[J]. Chemical Research and Application, 2017, 29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027
    [15] 邹建龙,屈建省,吕光明,等. 新型固井降失水剂BXF-200L的研制与应用[J]. 钻井液与完井液,2005,22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006

    ZOU Jianlong, QU Jiansheng, LYU Guangming, et al. A novel fluid loss additive BXF-200L for oilfield cement and its application[J]. Drilling Fluid & Completion Fluid, 2005, 22(2):20-23. doi: 10.3969/j.issn.1001-5620.2005.02.006
    [16] 杨远光,张继尹,马思平. 油井水泥低温早强剂室内研究[J]. 西南石油大学学报(自然科学版),2009,31(1):141-144.

    YANG Yuanguang, ZHANG Jiyin, MA Siping. Laboratory study on low temperature early strength agent of oil well cement slurry[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(1):141-144.
    [17] 李晓维. 基于复合型膨胀剂的水泥浆体系研究及应用[D]. 青岛: 中国石油大学(华东), 2019.

    LI Xiaowei. Research and application of cement slurry system based on compound expansive agent[D]. Qingdao: China University of Petroleum (East China), 2019.
    [18] 刘伟,毛莉君,欧阳伟. 页岩气油基交联固化堵漏技术研究与应用[J]. 钻井液与完井液,2021,38(2):207-211. doi: 10.3969/j.issn.1001-5620.2021.02.013

    LIU Wei, MAO Lijun, OU YANG Wei. Research on plugging technology of shale gas Oil-Based crosslinking solidification[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):207-211. doi: 10.3969/j.issn.1001-5620.2021.02.013
    [19] 周志世,张震,张欢庆,等. 超深井长裸眼井底放空井漏失返桥接堵漏工艺技术[J]. 钻井液与完井液,2020,37(4):456-464. doi: 10.3969/j.issn.1001-5620.2020.04.009

    ZHOU Zhishi, ZHANG Zhen, ZHANG Huanqing, et al. Controlling mud losses into caves with bridging techniques in ultra-deep long open hole[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):456-464. doi: 10.3969/j.issn.1001-5620.2020.04.009
    [20] 王在明,许婧,张艺馨,等. 自固结堵漏剂性能评价及现场应用[J]. 石油钻探技术,2021,49(6):62-66. doi: 10.11911/syztjs.2021044

    WANG Zaiming, XU Jing, ZHANG Yixin, et al. Performance evaluation and field application of self-consolidating plugging agents[J]. Petroleum Drilling Techniques, 2021, 49(6):62-66. doi: 10.11911/syztjs.2021044
    [21] 杨振杰,张玉强,吴伟,等. XAN-D新型堵漏评价试验仪研究与应用[J]. 钻井液与完井液,2010,27(1):44-46. doi: 10.3969/j.issn.1001-5620.2010.01.015

    YANG Zhenjie, ZHANG Yuqiang, WU Wei, et al. Study and application of the model XAN-D lost circulation tester[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):44-46. doi: 10.3969/j.issn.1001-5620.2010.01.015
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  59
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-09-01
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回