留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多巴仿生润滑剂在水基钻井液中的应用及机理研究

杨旭坤 蒋官澄 贺垠博 董腾飞

杨旭坤,蒋官澄,贺垠博,等. 多巴仿生润滑剂在水基钻井液中的应用及机理研究[J]. 钻井液与完井液,2023,40(6):749-755, 764 doi: 10.12358/j.issn.1001-5620.2023.06.008
引用本文: 杨旭坤,蒋官澄,贺垠博,等. 多巴仿生润滑剂在水基钻井液中的应用及机理研究[J]. 钻井液与完井液,2023,40(6):749-755, 764 doi: 10.12358/j.issn.1001-5620.2023.06.008
YANG Xukun, JIANG Guancheng, HE Yinbo, et al.Application and mechanisms of dopa biomimetic lubricant in water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(6):749-755, 764 doi: 10.12358/j.issn.1001-5620.2023.06.008
Citation: YANG Xukun, JIANG Guancheng, HE Yinbo, et al.Application and mechanisms of dopa biomimetic lubricant in water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(6):749-755, 764 doi: 10.12358/j.issn.1001-5620.2023.06.008

多巴仿生润滑剂在水基钻井液中的应用及机理研究

doi: 10.12358/j.issn.1001-5620.2023.06.008
基金项目: 国家自然科学基金青年科学基金项目“智能钻井液聚合物处理剂刺激响应机理与分子结构设计方法研究”(52004297)。
详细信息
    作者简介:

    杨旭坤,博士,1993年生,主要从事钻井液润滑剂方面研究。电话18047887961 ;E-mail:yangxukunbj@126.com。

    通讯作者:

    蒋官澄,教授,博士生导师,1966年生,研究方向为钻井液完井液化学与工程、油气层损害与保护技术。E-mail:jgc5786@126.com。

  • 中图分类号: TE254.4

Application and Mechanisms of Dopa Biomimetic Lubricant in Water Based Drilling Fluids

  • 摘要: 利用多巴强大的水下黏附性能,合成了一种适用于水基钻井液的多巴仿生润滑剂L2,3。这种新型润滑剂解决了长期以来酯类润滑剂在水中因黏附性较差无法在钻具表面形成有效润滑膜而导致的润滑性能变差的问题。此外,合成了酚羟基位置不同的润滑剂L2,5,并通过FT-IR光谱和1H NMR对其进行表征。通过极压润滑仪、泥饼黏附系数测试仪、四球摩擦仪和扫描电子显微镜(SEM)评估润滑性能和耐磨性。在钠基膨润土基浆(Na-BT)中, L2,3具有最好的润滑性能,1%加量下摩擦系数(COF)低至0.07,COF降低率达到87.7%,磨痕直径(WSD)为0.587 mm,在210 ℃以内,均能保持良好的润滑性能且不起泡。相比之下,L2,5在清水中润滑性较好,摩擦系数为0.1,但在Na-BT中无法抵御黏土颗粒的剪切,润滑膜脱落,摩擦系数为0.57,接近未添加润滑剂的空白Na-BT。通过X射线光电子能谱(XPS)分析了表面润滑膜的成分和厚度,发现酚羟基结构提高了润滑剂在金属表面的黏附能力,进而提高了其润滑和抗磨性能,具体还与酚羟基类型有关。含有邻苯二酚结构的L2,3通过双齿金属配位键在金属表面形成了一层致密的厚度超过80 nm的有机膜;而含有对位羟基结构的L2,5只能在表面形成一层厚度低于20 nm的润滑膜。由于L2,3在金属表面形成的双齿金属配位键更加稳定,所以其润滑和抗磨性能远高于L2,5

     

  • 图  1  润滑剂的红外光谱图

    图  2  原料OA和产物 L 2,3L 2,51H NMR谱图

    图  3  L2,3在不同老化温度下的极压润滑系数和起泡情况

    图  4  润滑剂在清水和Na-BT中的摩擦系数(COF)

    图  5  润滑剂在清水中的磨痕(a~c)以及润滑剂在Na-BT中的磨痕(d~f)SEM图

    图  6  被Na-BT, Na-BT/L2,5和Na-BT/L2,3润滑过的钢球磨痕Fe2p分析

    图  7  不同润滑剂的C1s光谱随刻蚀深度的变化

    表  1  润滑剂L2,3和L2,5在清水中或钠膨润土浆的极压润滑系数

    样品极压润滑系数润滑系数降低率/%
    清水0.37
    清水+1% L2,30.0878.4
    清水+1% L2,50.1656.8
    Na-BT0.56
    Na-BT+1% L2,30.0983.9
    Na-BT+1% L2,50.4814.3
    下载: 导出CSV

    表  2  润滑剂L2,3和L2,5对泥饼黏附系数和体积的影响

    样品泥饼
    黏附系数
    黏附系数
    降低率/%
    体积变化
    率/%
    Na-BT0.2672
    Na-BT+1% L2,30.043683.60
    Na-BT+1% L2,50.219517.90
    下载: 导出CSV
  • [1] JIANG G C, SUN J S, HE Y B, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2021, 18:129-142.
    [2] LI M C, WU Q L, SONG K L, et al. Soy protein isolate as fluid loss additive in Bentonite-Water-Based drilling fluids[J]. ACS Applied Materials & Interfaces, 2015, 7(44):24799-24809.
    [3] NAVARRO A R, DANNELS W R. Maximizing drilling operations by mitigating the adverse affects of friction through advanced drilling fluid technology[C]//Presentation at the 2011 AADE National Technical Conference and Exhibition, Houston, Texas: American Association of Drilling Engineers, 2011: AADE-11-NTCE-17.
    [4] ESPAGNE B J L, LAMRANI-KERN S, RODESCHINI H. Biodegradable lubricating composition and use thereof in a drilling fluid, in particular for very deep reservoirs: AU-A-2010331833[P]. 2010-12-14.
    [5] Arumugam S, Ellappan R, Sriram G. Degradation of engine components upon exposure to chemically modified vegetable oil - Based automotive lubricant[J]. Journal of the Indian Chemical Society, 2021, 98(11):100227. doi: 10.1016/j.jics.2021.100227
    [6] Pettersson A. High-performance base fluids for environmentally adapted lubricants[J]. Tribology International, 2007, 40(4):638-645. doi: 10.1016/j.triboint.2005.11.016
    [7] MIAN S A, GAO X F, NAGASE S, et al. Adsorption of catechol on a wet silica surface: density functional theory study[J]. Theoretical Chemistry Accounts, 2011, 130(2):333-339.
    [8] GAO Z J, DUAN L J, YANG Y Q, et al. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion[J]. Applied Surface Science, 2018, 427, Part B: 74-82.
    [9] LAVOIE M J, OSTASZEWSKI B L, WEIHOFEN A, et al. Dopamine covalently modifies and functionally inactivates parkin[J]. Nature Medicine, 2005, 11(11):1214-1221. doi: 10.1038/nm1314
    [10] BURZIO L A, WAITE J H. Cross-linking in adhesive quinoproteins: studies with model decapeptides[J]. Biochemistry, 2000, 39(36):11147-11153. doi: 10.1021/bi0002434
    [11] GILLICH T, BENETTI E M, RAKHMATULLINA E, et al. Self-assembly of focal point oligo-catechol ethylene glycol dendrons on titanium oxide surfaces: adsorption kinetics, surface characterization, and nonfouling properties[J]. Journal of the American Chemical Society, 2011, 133(28):10940-10950. doi: 10.1021/ja202760x
    [12] LI S C, LOSOVYJ Y, DIEBOLD U. Adsorption-site-dependent electronic structure of catechol on the anatase TiO2(101) surface[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(14):8600-8604. doi: 10.1021/la201553k
    [13] YU M, DEMING T J. Synthetic polypeptide mimics of marine adhesives[J]. Macromolecules, 1998, 31(15):4739-4745. doi: 10.1021/ma980268z
    [14] KHARE E, HOLTEN-ANDERSEN H, BUEHLER M J, et al. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties[J], Nature Reviews Materials, 2021, 6(5): 421-436.
    [15] MIAN S A, YANG L M, SAHA L C, et al. A fundamental understanding of catechol and water adsorption on a hydrophilic silica surface: exploring the underwater adhesion mechanism of mussels on an atomic scale[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2014, 30(23):6906-6914. doi: 10.1021/la500800f
    [16] LI S C, CHU L N, GONG X Q, et al. Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110)surface[J]. Science & Technology Libraries, 2010, 328(5980):882-884.
    [17] BOYDE S. Hydrolytic stability of synthetic ester lubricants[J]. Lubrication Science, 2000, 16(4):297-312.
    [18] WILSON D, LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature[J]. Applied Surface Science, 2014, 303:6-13. doi: 10.1016/j.apsusc.2014.02.006
    [19] PATRICK C R, PROSSER G S. A molecular complex of benzene and hexafluorobenzene[J]. Nature, 1960, 187:1021.
    [20] FOXENBERG E W, Ali S A, LONG T P, et al. Field experience shows that new lubricant reduces friction and improves formation compatibility and environmental impact[C]//Paper presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA: 2008: SPE-112483-MS.
    [21] LEE B P, HUANG K, NUNALEE F N, et al. Synthesis of 3, 4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels[J]. Journal of Biomaterials Science. Polymer Edition, 2004, 15(4):449-464. doi: 10.1163/156856204323005307
    [22] NORTH M A, DEL GROSSO C A, WILKER J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. Acs Applied Materials & Interfaces, 2017, 9(8):7866-7872.
    [23] LEE B P, CHAO C Y, NUNALEE F N, et al. Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content[J]. Macromolecules, 2006, 39(5):1740-1748. doi: 10.1021/ma0518959
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  106
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-06-01
  • 录用日期:  2023-06-30
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回