留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增黏助排一体化聚合物分散液制备及性能评价

林海 张成娟 赵文凯 万有余 王志晟 郭得龙 王金冉 贾文峰

林海,张成娟,赵文凯,等. 增黏助排一体化聚合物分散液制备及性能评价[J]. 钻井液与完井液,2023,40(5):678-684 doi: 10.12358/j.issn.1001-5620.2023.05.019
引用本文: 林海,张成娟,赵文凯,等. 增黏助排一体化聚合物分散液制备及性能评价[J]. 钻井液与完井液,2023,40(5):678-684 doi: 10.12358/j.issn.1001-5620.2023.05.019
LIN Hai, ZHANG Chengjuan, ZHAO Wenkai, et al.Preparation and properties of viscosification and drainage integrated polymer dispersion[J]. Drilling Fluid & Completion Fluid,2023, 40(5):678-684 doi: 10.12358/j.issn.1001-5620.2023.05.019
Citation: LIN Hai, ZHANG Chengjuan, ZHAO Wenkai, et al.Preparation and properties of viscosification and drainage integrated polymer dispersion[J]. Drilling Fluid & Completion Fluid,2023, 40(5):678-684 doi: 10.12358/j.issn.1001-5620.2023.05.019

增黏助排一体化聚合物分散液制备及性能评价

doi: 10.12358/j.issn.1001-5620.2023.05.019
基金项目: 中国石油集团科研攻关项目“柴达木盆地页岩油勘探开发理论与关键技术研究”(2021DJ1808);中石油-中国石油大学(北京)战略合作项目“准葛尔盆地玛湖中下组合和吉木萨尔陆相页岩油高效勘探开发理论与关键技术研究”(ZLZX2020-01)。
详细信息
    作者简介:

    林海,硕士,高级工程师,现在主要从事压裂酸化及采油工艺技术研究,E-mail:linhaiqh@petrochina.com.cn。

    通讯作者:

    贾文峰,博士,中国石油大学(北京),副研究员,主要从事压裂酸化材料及压裂提采一体化技术研究,E-mail:jiawf@cup.edu.cn。

  • 中图分类号: TE357.12

Preparation and Properties of Viscosification and Drainage Integrated Polymer Dispersion

  • 摘要: 速溶耐盐聚合物是高矿化度地层水和返排水有效利用的关键产品,实现增黏助排一体化是稠化剂研发的主要方向。设计合成了一种弱疏水缔合聚合物,优化形成了增黏助排一体化分散液,并对压裂液的综合性能进行了评价研究。该聚合物分散液可满足194 557.93 mg/L的超高矿化水在线配制要求,在分散液用量0.1%~1.2%情况下可以实现黏度2~106 mPa·s可调;分散液用量大于0.4 %以后压裂液破胶液表面张力小于27 mN/m;90 ℃下,剪切1h后增黏助排一体化压裂液黏度大于50 mPa·s;1.0%聚合物分散液在80 ℃下破胶2 h,破胶液黏度为4 mPa·s左右;在聚合物分散液用量为0.1%时,压裂液减阻率大于65%。该聚合物分散液可以满足超高矿化度地层水及返排液配液要求,可以实现在线变黏及助排一体化,大幅度降低压裂液成本,简化现场配液流程,具有广泛应用前景。

     

  • 图  1  耐盐聚合物合成步骤及分子结构

    图  2  Am与AMPS物质的量比对聚合物增黏性能影响

    图  3  单体比例对表观黏度与黏度保持率的影响

    图  4  疏水单体浓度对增黏和溶解性能影响

    图  5  分散剂用量对稳定性和溶解性能影响

    图  6  聚合物分散液用量与黏度关系

    图  7  耐盐稠化剂水溶液的耐温耐剪切性能

    图  8  滑溜水减阻率-流变关系曲线

    图  9  压裂液表观黏度与破胶剂用量关系

    图  10  破胶液表面张力与分散液用量关系

    表  1  青海油田高矿化度地层水成分

    ρ/(g·cm−3K++Na+/(mg·L-1Ca2+/(mg·L-1Mg2+/(mg·L-1Cl/(mg·L-1SO42−/(mg·L-1总矿化度/(mg·L-1
    1.1867 924.296063.65734.44111 463.938136.28194 557.93
    下载: 导出CSV
  • [1] 俞路遥,许可,石阳,等. 复杂水配制压裂液技术研究进展[J]. 当代化工,2022,51(9):2231-2234,2239. doi: 10.13840/j.cnki.cn21-1457/tq.2022.09.040

    YU Luyao, XU Ke, SHI Yang, et al. Research progress of fracturing fluid preparation technology with complex water[J]. Contemporary Chemical Industry, 2022, 51(9):2231-2234,2239. doi: 10.13840/j.cnki.cn21-1457/tq.2022.09.040
    [2] 薛俊杰,朱卓岩,欧阳坚,等. 耐盐耐高温三元聚合物压裂液稠化剂的制备与性能评价[J]. 油田化学,2018,35(1):41-46,59. doi: 10.19346/j.cnki.1000-4092.2018.01.008

    XUE Junjie, ZHU Zhuoyan, OU YANG Jian, et al. Preparation and performance evaluation of terpolymer thickening agent with salt tolerance and high temperature resistance for oilfield fracturing fluid[J]. Oilfield Chemistry, 2018, 35(1):41-46,59. doi: 10.19346/j.cnki.1000-4092.2018.01.008
    [3] WENFENG J, CHENGGANG X, BAO J, et al. A high temperature retarded acid based on self-assembly of hydrophobically associating polymer and surfactant[J]. Journal of Molecular Liquids, 2023, 370:121017. doi: 10.1016/j.molliq.2022.121017
    [4] ZHANG Y, MAO J C, ZHAO J Z, et al. Preparation of a hydrophobic-associating polymer with ultra-high salt resistance using synergistic effect[J]. Polymers, 2019, 11(4):626. doi: 10.3390/polym11040626
    [5] GAUTAM S, GURIA C. Optimal synthesis, characterization, and performance evaluation of high-pressure high-temperature polymer-based drilling fluid: the effect of viscoelasticity on cutting transport, filtration loss, and lubricity[J]. SPE Journal, 2020, 25(3):1333-1350. doi: 10.2118/200487-PA
    [6] 郭建春,任山,唐朝钧,等. 一体化变黏抗盐降阻剂的研制及应用[J]. 石油与天然气化工,2022,51(5):80-86. doi: 10.3969/j.issn.1007-3426.2022.05.012

    GUO Jianchun, REN Shan, TANG Chaojun, et al. Development and application of an integrated variable viscosity and anti-salt drag reducing agent[J]. Chemical Engineering of Oil and Gas, 2022, 51(5):80-86. doi: 10.3969/j.issn.1007-3426.2022.05.012
    [7] 贾金亚,魏娟明,贾文峰,等. 页岩气压裂用滑溜水胶液一体化稠化剂研究[J]. 应用化工,2019,48(6):1247-1250. doi: 10.3969/j.issn.1671-3206.2019.06.001

    JIA Jinya, WEI Juanming, JIA Wenfeng, et al. Study of thickener used in shale gas fracturing for slide water and gel-liquid integration[J]. Applied Chemical Industry, 2019, 48(6):1247-1250. doi: 10.3969/j.issn.1671-3206.2019.06.001
    [8] 魏娟明. 滑溜水–胶液一体化压裂液研究与应用[J]. 石油钻探技术,2022,50(3):112-118.

    WEI Juanming. Research and application of slick water and gel-liquid integrated fracturing fluids[J]. Petroleum Drilling Techniques, 2022, 50(3):112-118.
    [9] 魏娟明,贾文峰,陈昊,等. 深层页岩气压裂用高黏高降阻一体化稠化剂的制备与性能评价[J]. 油田化学,2022,39(2):234-238. doi: 10.19346/j.cnki.1000-4092.2022.02.008

    WEI Juanming, JIA Wenfeng, CHEN Hao, et al. Preparation and performance evaluation of integrated thickener with high viscosity and high drag reduction used for fracturing deeper shale gas[J]. Oilfield Chemistry, 2022, 39(2):234-238. doi: 10.19346/j.cnki.1000-4092.2022.02.008
    [10] 徐栋,王玉斌,白坤森,等. 煤系非常规天然气一体化压裂液体系研究与应用[J]. 煤田地质与勘探,2022,50(10):35-43. doi: 10.12363/issn.1001-1986.21.12.0772

    XU Dong, WANG Yubin, BAI Kunsen, et al. Research and application of integrated fracturing fluid system for unconventional natural gas in coal measures[J]. Coal Geology & Exploration, 2022, 50(10):35-43. doi: 10.12363/issn.1001-1986.21.12.0772
    [11] WEVER D A Z, PICCHIONI F, BROEKHUIS A A. Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution[J]. Progress in Polymer Science, 2011, 36(11):1558-1628. doi: 10.1016/j.progpolymsci.2011.05.006
    [12] RELLEGADLA S, PRAJAPAT G, AGRAWAL A. Polymers for enhanced oil recovery: fundamentals and selection criteria[J]. Applied Microbiology and Biotechnology, 2017, 101(11):4387-4402. doi: 10.1007/s00253-017-8307-4
    [13] MAO J C, XUE J X, ZHANG H. Investigation of a hydrophobically associating polymer’s temperature and salt resistance for fracturing fluid thickener[J]. Colloid and Polymer Science, 2022, 300(5):569-582. doi: 10.1007/s00396-022-04965-3
    [14] MAO J C, TAN H Z, YANG B, et al. Novel hydrophobic associating polymer with good salt tolerance[J]. Polymers, 2018, 10(8):849. doi: 10.3390/polym10080849
    [15] 汪艳,刘彭城. 抗高温耐盐型聚丙烯酰胺产品的研究进展[J]. 广州化工,2017,45(3):9-10,20. doi: 10.3969/j.issn.1001-9677.2017.03.004

    WANG Yan, LIU Pengcheng. Research progress on temperature resistant and salt resistant properties of polyacrylamide products[J]. Guangzhou Chemical Industry, 2017, 45(3):9-10,20. doi: 10.3969/j.issn.1001-9677.2017.03.004
    [16] 贾文峰,任倩倩,王旭,等. 高温携砂酸液体系及其性能评价[J]. 钻井液与完井液,2017,34(4):96-100. doi: 10.3969/j.issn.1001-5620.2017.04.018

    JIA Wenfeng, REN Qianqian, WANG Xu, et al. A high temperature sand carrying acid and its performance evaluation[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):96-100. doi: 10.3969/j.issn.1001-5620.2017.04.018
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  61
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-04-01
  • 录用日期:  2023-04-01
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回