留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高密度废弃水基钻井液电破胶条件的响应曲面法

王潇辉 王旭东 姜春丽 师浩林 薛迦文 徐加放

王潇辉,王旭东,姜春丽,等. 高密度废弃水基钻井液电破胶条件的响应曲面法[J]. 钻井液与完井液,2023,40(5):622-628 doi: 10.12358/j.issn.1001-5620.2023.05.011
引用本文: 王潇辉,王旭东,姜春丽,等. 高密度废弃水基钻井液电破胶条件的响应曲面法[J]. 钻井液与完井液,2023,40(5):622-628 doi: 10.12358/j.issn.1001-5620.2023.05.011
WANG Xiaohui, WANG Xudong, JIANG Chunli, et al.Using rsm to determine electric gel breaking conditions for waste high density water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(5):622-628 doi: 10.12358/j.issn.1001-5620.2023.05.011
Citation: WANG Xiaohui, WANG Xudong, JIANG Chunli, et al.Using rsm to determine electric gel breaking conditions for waste high density water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(5):622-628 doi: 10.12358/j.issn.1001-5620.2023.05.011

高密度废弃水基钻井液电破胶条件的响应曲面法

doi: 10.12358/j.issn.1001-5620.2023.05.011
基金项目: 中石化胜利工程公司“高密度钻井液电场破胶与重晶石回收方法研究”项目(SKG2111);中石油集团公司关键核心技术重大科技攻关项目“抗温240 ℃以上的环保井筒工作液新材料”联合资助(2020A-3913)。
详细信息
    作者简介:

    王潇辉,男,硕士研究生,主要从事废弃钻井液的绿色处理方法研究。电话17865560997;E-mail:z20020063@s.upc.edu.cn。

    通讯作者:

    徐加放,电话(0532)86981190;E-mail:xjiafang@upc.edu.cn。

  • 中图分类号: TE254.3

Using RSM to Determine Electric Gel Breaking Conditions for Waste High Density Water Based Drilling Fluids

  • 摘要: 随着深层、超深层油气资源开发力度的不断加大,地层压力逐渐升高,高密度废弃钻井液处理量也不断增长。传统的化学絮凝剂存在成本高、普适性差及潜在的二次污染等问题,利用外加电场是高密度废弃钻井液绿色处理的新手段。在单因素实验的基础上,运用响应曲面法(RSM)研究了电流强度、破胶时间、极板间距3个因素及其交互作用对钻井液体系的Zeta电位和粒径分布的影响。结果表明,在电流强度为8 A、极板间距为3 cm、破胶时间为10 min的条件下,废弃钻井液破胶效果达到最优。破胶后的钻井液体系的Zeta电位上升率为38.29 %,达到了−26.2 mV,其体系的粒径分布D90达到了562.5 μm。废弃钻井液体系的胶体稳定性得以破坏,为后续体系中有用组分的回收及废弃组分的处理工作提供有力支撑。

     

  • 图  1  电流强度、极板间距及其交互作用 对粒径分布D90的响应曲面图

    图  2  电流强度、破胶时间及其交互作用 对粒径分布D90的响应曲面图

    图  3  极板间距、破胶时间及其交互作用 对粒径分布D90的响应曲面图

    图  4  电流强度、极板间距及其交互 作用对Zeta电位的响应曲面

    图  5  电流强度、破胶时间及其交互 作用对Zeta电位的响应曲面

    图  6  极板间距、破胶时间及其交互 作用对Zeta电位的响应曲面

    图  7  不同操作体条件下电能成本的变化

    表  1  CCD设计方案及响应值

    实验编号电流强度/At破胶/min极板间距/cmD90/μmζ/mV
    165.03220.0−33.75
    2105.03910.0−28.94
    3610.03140.0−34.30
    41010.03811.6−30.12
    565.05660.0−28.53
    6105.051138.0−26.57
    7610.05217.3−30.80
    81010.051065.0−27.33
    967.54180.0−35.33
    10107.541024.0−29.46
    1185.04506.4−27.92
    12810.04208.2−31.33
    1387.53198.4−32.45
    1487.55562.5−26.18
    1587.54250.6−30.94
    1687.54290.0−30.56
    1787.54250.0−30.33
    1887.54270.0−29.88
    1987.54260.8−31.04
    2087.54310.8−28.66
    下载: 导出CSV

    表  2  响应曲面的方差分析结果

    效应系数标准误差T值P值显著性
    粒径分布 X1 706.300 353.100 23.400 15.09 0 显著
    X2 −198.500 −99.200 23.400 −4.24 0.002 显著
    X3 272.600 136.300 23.400 5.82 0 显著
    X12 532.300 266.200 44.600 5.96 0 显著
    X22 42.900 21.400 44.600 0.48 0.641 不显著
    X32 89.200 44.600 44.600 1.00 0.341 不显著
    X1X2 87.800 43.900 26.200 1.68 0.124 不显著
    X1X3 −9 .000 −4.500 26.200 −0.17 0.867 不显著
    X2X3 −84.300 −42.200 26.200 −1.61 0.138 不显著
    Zeta电位 X1 4.059 2.029 0.345 5.88 0 显著
    X2 −1.633 −0.816 0.345 −2.37 0.040 显著
    X3 4.031 2.016 0.345 5.84 0 显著
    X12 −3.724 −1.862 0.658 −2.83 0.018 不显著
    X22 1.819 0.910 0.658 1.38 0.197 不显著
    X32 2.439 1.220 0.658 1.85 0.093 不显著
    X1X2 0.218 0.109 0.386 0.28 0.783 不显著
    X1X3 −0.892 −0.446 0.386 −1.16 0.275 不显著
    X2X3 −0.325 −0.162 0.386 −0.42 0.682 不显著
    下载: 导出CSV
  • [1] 田野. 废弃钻井液处理技术探讨[J]. 西部探矿工程,2021,33(3):30-31. doi: 10.3969/j.issn.1004-5716.2021.03.009

    TIAN Ye. Discussion on treatment technology of waste drilling fluid[J]. West-china Exploration Engineering, 2021, 33(3):30-31. doi: 10.3969/j.issn.1004-5716.2021.03.009
    [2] 李月龙. 油田废弃钻井液无害化处理技术的研究[J]. 西部探矿工程,2022,34(1):48-51. doi: 10.3969/j.issn.1004-5716.2022.01.015

    LI Yuelong. Research on harmless treatment technology of waste drilling fluid in oilfield[J]. West-china Exploration Engineering, 2022, 34(1):48-51. doi: 10.3969/j.issn.1004-5716.2022.01.015
    [3] 刘利明. 钻井工程废弃钻井液处理技术分析[J]. 西部探矿工程,2019,31(5):91-92. doi: 10.3969/j.issn.1004-5716.2019.05.031

    LIU Liming. Analysis on treatment technology of waste drilling fluid in drilling engineering[J]. West-china Exploration Engineering, 2019, 31(5):91-92. doi: 10.3969/j.issn.1004-5716.2019.05.031
    [4] 何长明,李俊华,王佳. 废弃钻井液无害化处理技术的研究[J]. 应用化工,2016,45(9):1792-1794. doi: 10.16581/j.cnki.issn1671-3206.2016.09.004

    HE Changming, LI Junhua, WANG Jia. Research of waste drilling fluid disposal technology[J]. Applied Chemical Industry, 2016, 45(9):1792-1794. doi: 10.16581/j.cnki.issn1671-3206.2016.09.004
    [5] 苏勤,何青水,张辉,等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术,2010,38(5):106-110.

    SU Qin, HE Qingshui, ZHANG Hui, et al. Foreign onshore drilling waste treatment technology[J]. Petroleum Drilling Techniques, 2010, 38(5):106-110.
    [6] 王眉山,郑毅. 中国废弃钻井液处理技术发展趋势[J]. 钻井液与完井液,2009,26(6):77-79. doi: 10.3969/j.issn.1001-5620.2009.06.023

    WANG Meishan, ZHENG Yi. The prospect of waste drilling fluid treatment technology in China[J]. Drilling Fluid & Completion Fluid, 2009, 26(6):77-79. doi: 10.3969/j.issn.1001-5620.2009.06.023
    [7] 蔡利山,阮光明,王全周,等. 加重剂回收利用技术探讨与可行性分析[J]. 钻井液与完井液,2012,29(1):34-37. doi: 10.3969/j.issn.1001-5620.2012.01.010

    CAI Lishan, RUAN Guangming, WANG Quanzhou, et al. Research and feasibility analysis on recycling technology of weighting materials[J]. Drilling Fluid & Completion Fluid, 2012, 29(1):34-37. doi: 10.3969/j.issn.1001-5620.2012.01.010
    [8] 刘培坤,徐金广,张悦刊,等. 钻井液加重剂回收试验研究[J]. 过滤与分离,2017,27(2):1-5. doi: 10.3969/j.issn.1005-8265.2017.02.001

    LIU Peikun, XU Jinguang, ZHANG Yuekan, et al. Experimental research on recovery of drilling fluid weighting compound[J]. Journal of Filtration & Separation, 2017, 27(2):1-5. doi: 10.3969/j.issn.1005-8265.2017.02.001
    [9] 周礼. 废弃水基钻井液无害化处理技术研究及应用[D]. 成都: 西南石油大学, 2014.

    ZHOU Li. Research and application of harmless treatment technology of waste water-based drilling fluid. [D]. Chengdu: Southwest Petroleum University, 2014.
    [10] LARSON T R. Methods for recovery and reuse of lcm. US: 12001490[P]. 2009-6-11.
    [11] 蔡利山,杨健,彭琳. 离心机分离固相测定分析方法及其应用[J]. 钻井液与完井液,2018,35(6):31-36. doi: 10.3969/j.issn.1001-5620.2018.06.006

    CAI Lishan, YANG Jian, PENG Lin. Method of solids composition determination of centrifuge and the application thereof[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):31-36. doi: 10.3969/j.issn.1001-5620.2018.06.006
    [12] 张爱顺,黄达全,曹孜英,等. 废弃聚合物钻井液无害化处理技术实验研究[J]. 油气田环境保护,2014,24(3):17-21. doi: 10.3969/j.issn.1005-3158.2014.03.007

    ZHANG Aishun, HUANG Quanda, CAO Ziying, et al. Experimental research into harmless treatment technology of waste polymer drilling liquid[J]. Environmental Protection of Oil & Gas Fields, 2014, 24(3):17-21. doi: 10.3969/j.issn.1005-3158.2014.03.007
    [13] 王学川,胡艳鑫,郑书杰,等. 国内外废弃钻井液处理技术研究现状[J]. 陕西科技大学学报(自然科学版),2010,28(6):169-174.

    WANG Xuechuan, HU Yanxin, ZHENG Shujie, et al. Application status of waste drilling fluid treatment technology at home and abroad[J]. Journal of Shaanxi University of Science & Technology, 2010, 28(6):169-174.
    [14] VLYSSIDES A G, KARLIS P K, ZORPAS A A. Eletrochemical oxidation of noncyanide strippers wastes[J]. Environment International, 1999, 25:663-670. doi: 10.1016/S0160-4120(99)00028-8
    [15] 陆香玉,俞海祥,陈亚,等. 化学絮凝与电絮凝调理污泥脱水性能影响作用的对比研究[J]. 环境科学学报,2022,42(3):257-267. doi: 10.13671/j.hjkxxb.2021.0441

    LU Xiangyu, YU Haiyang, CHEN Ya, et al. Comparison of the effects of chemical flocculation and electric flocculation conditioning on sludge dewatering performance[J]. Acta Scientiae Circumstantiae, 2022, 42(3):257-267. doi: 10.13671/j.hjkxxb.2021.0441
    [16] 谢水祥,任雯,李兴春,等. 电吸附再生废弃水基钻井液作用机理[J]. 天然气工业,2019,39(12):139-145. doi: 10.3787/j.issn.1000-0976.2019.12.018

    XIE Shuixiang, REN Wen, LI Xingchun, et al. Mechanism of electrosorption recycled waste water-based drilling fluid[J]. Natural Gas Industry, 2019, 39(12):139-145. doi: 10.3787/j.issn.1000-0976.2019.12.018
    [17] SHER F, HANIF K, IQBAL S Z, et al. Implications of advanced wastewater treatment: Electrocoagulation and electroflocculation of effluent discharged from a wastewater treatment plant[J]. Journal of Water Process Engineering, 2020, 33(C):101101-101101.
    [18] TURAN N B, ERKAN H S, ENGIN G O. The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters[J]. Process Safety and Environmental Protection, 2017, 109:203-213. doi: 10.1016/j.psep.2017.04.002
    [19] 袁青松,冯辉,张栋,等. 强封堵钻井液体系在河南页岩气钻井中的研究和应用[J]. 钻井液与完井液,2019,36(1):29-35.

    YAN Qingsong, FENG Hui, ZHANG Dong, et al. Study of a strong plugging drilling fluid used in shale gas drilling in He’nan province[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):29-35.
    [20] 陈彬,张伟国,姚磊,等. 基于井壁稳定及储层保护的钻井液技术[J]. 石油钻采工艺,2021,43(2):184-188.

    CHEN Bin, ZHANG Weiguo, YAO Lei, et al. Drilling fluid technology based on well stability and reservoir protection[J]. Oil Drilling & Production Technology, 2021, 43(2):184-188.
    [21] 夏海英,兰林,杨丽,等. 强抑制钻井液体系研究及现场应用[J]. 钻井液与完井液,2019,36(4):427-430.

    XIA Haiying, LAN Lin, YANG Li, et al. Study and field application of a highly inhibited drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):427-430.
    [22] 周启成,梁应红,单海霞,等. 抗高温高密度生物质钻井液体系研究及应用[J]. 石油钻探技术,2022,50(6):78-84.

    ZHOU Qicheng, LIANG Yinghong, SHAN Haixia, et al. Research and application of a high-temperature resistant and high-density biomass drilling fluid system[J]. Petroleum Drilling Techniques, 2022, 50(6):78-84.
    [23] 王景. 临兴-神府井区废弃钻井液处理技术[J]. 石油钻探技术,2022,50(1):60-64.

    WANG Jing. Treatment technology of waste drilling fluids in the Linxing-Shenfu Well Area[J]. Petroleum Drilling Techniques, 2022, 50(1):60-64.
    [24] 周姗姗,钟成兵,刘杰,等. 超低摩阻水基钻井液在页岩气水平井的应用[J]. 钻井液与完井液,2022,39(3):313-318.

    ZHOU Shanshan, ZHONG Chengbing, LIU Jie, et al. Application of ultra-low friction wwater-based ddrilling ffluid in shale gas horizontal wells[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):313-318.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  69
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-05-06
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回