留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水基钻井液固相分布与控制——以苏里格东部气井为例

李明辉 王凯 王清臣

李明辉,王凯,王清臣. 水基钻井液固相分布与控制——以苏里格东部气井为例[J]. 钻井液与完井液,2023,40(5):611-616 doi: 10.12358/j.issn.1001-5620.2023.05.009
引用本文: 李明辉,王凯,王清臣. 水基钻井液固相分布与控制——以苏里格东部气井为例[J]. 钻井液与完井液,2023,40(5):611-616 doi: 10.12358/j.issn.1001-5620.2023.05.009
LI Minghui, WANG Kai, WANG Qingchen.Study on solids distribution and control in water based drilling fluids-take gas wells in western Sulige as example[J]. Drilling Fluid & Completion Fluid,2023, 40(5):611-616 doi: 10.12358/j.issn.1001-5620.2023.05.009
Citation: LI Minghui, WANG Kai, WANG Qingchen.Study on solids distribution and control in water based drilling fluids-take gas wells in western Sulige as example[J]. Drilling Fluid & Completion Fluid,2023, 40(5):611-616 doi: 10.12358/j.issn.1001-5620.2023.05.009

水基钻井液固相分布与控制——以苏里格东部气井为例

doi: 10.12358/j.issn.1001-5620.2023.05.009
基金项目: 川庆钻探工程有限公司科研项目“高浓度复合盐水钻井液固相含量快速测量方法及装置研究” (CQ2023B-Z-29-3);川庆钻探工程有限公司科研项目“长庆区域水基钻井液废弃物离心甩干处理技术研究”(CQ2023B-40-2-7)。
详细信息
    作者简介:

    李明辉,1969年生,2011年1月毕业于西安石油大学工商管理专业,现在从事钻井工程研究工作。电话 (029)86594437;E-mail:zjsglmh@cnpc.com.cn

  • 中图分类号: TE254.2

Study on Solids Distribution and Control in Water Based Drilling Fluids-Take Gas Wells in Western Sulige as Example

  • 摘要: 为促进钻井现场水基钻井液的精细化控制程度、进一步提升安全高效钻井技术。以苏里格东部两口气井钻探现场的水基钻井液为研究对象,对其在钻进过程中的固相含量变化、固相粒径分布、钻井液含砂量以及固控设备的清除效率等开展了分析研究。结果表明,从延长组至马家沟组的钻进过程中,钻井液固相含量从4%~7%增长至9%~13%,伴随着钻井液密度的上升;粒径大于109 μm(140目)的固相从63.05%降至35.5%,粒径小于74 μm的固相从3.98%增长至12.73%,且固控设备难以降低其含量;钻井液含砂量控制在0.5%以内;在钻井液体系转化前后,沉砂罐和振动筛清除固相效率最高分别为43.31%~51.47%和45.38%~53.98%,而除砂除泥一体机的清除效率最低为5.31%~11.76%。这为钻井现场的高效固相控制与水基钻井液的精细优化提供了参考与借鉴。

     

  • 图  1  钻进不同地层时钻井液在各  固控阶段的固相含量变化

    图  2  钻进不同地层时钻井液在各固控阶段的密度变化

    图  3  钻进不同地层时经各固控设备处理后 钻井液中不同粒径范围内的固相含量

    图  4  钻进不同地层时钻井液中膨润土含量变化

    图  5  刘家沟组与石盒子组钻井液中固相的粒径分布

    图  6  钻进不同地层时在各固控阶段含砂量变化

    图  7  钻进不同地层时钻井液中200~220目固相含量变化及固控设备对其清除效果 

    图  8  钻至不同地层各固控设备清除固相占  整个固控系统清除固相总量的比例

  • [1] 张家旗,王建华,魏风奇,等. 基于线性回归的油基钻井液有害低密度固相含量计算方法[J]. 钻井液与完井液,2019,36(5):560-563. doi: 10.3969/j.issn.1001-5620.2019.05.006

    ZHANG Jiaqi, WANG Jianhua, WEI Fengqi, et al. Calculation of harmful low density solids content in oil base drilling fluids using linear regression method[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):560-563. doi: 10.3969/j.issn.1001-5620.2019.05.006
    [2] 贾国亮,李晓岚,郑永太,等. 高密度油基钻井液流变性影响因素及控制措施[J]. 精细石油化工进展,2021,22(1):14-19. doi: 10.3969/j.issn.1009-8348.2021.01.004

    JIA Guoliang, LI Xiaolan, ZHENG Yongtai, et al. The factors affecting the rheological properties and control measures of high-density oil-based drilling fluids[J]. Advances in Fine Petrochemicals, 2021, 22(1):14-19. doi: 10.3969/j.issn.1009-8348.2021.01.004
    [3] 彭双磊. 水基钻井液有机处理剂环境影响机理与微固相清除技术的研究[D]. 北京: 中国石油大学(北京), 2019.

    PENG Shuanglei. Study on Environmental impact mechanism of organic additives and microsolids removal technology for water-based drilling fluids[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [4] 胡祖彪,张建卿,王清臣,等. 长庆致密气超长水平段水基钻井液技术[J]. 钻井液与完井液,2021,38(2):183-188. doi: 10.3969/j.issn.1001-5620.2021.02.009

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Water base drilling fluid technology for ultra-long horizontal drilling in a tight gas well in Changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):183-188. doi: 10.3969/j.issn.1001-5620.2021.02.009
    [5] DAVISON J M, DACCORD G, PROUVOST L P, et al. Rig-site monitoring of the drilling fluid solids content and Solids-control equipment discharge[J]. SPE Drilling & Completion, 1999, 14(2):130-138.
    [6] 杨健,蔡利山. 钻井液固相分析与计算中常见问题讨论及处理方法[J]. 油田化学,2022,39(2):209-215.

    YANG Jian, CAI Lishan. Common problems and treatment of solid phase analysis and calculation of drilling fluid[J]. Oilfield Chemistry, 2022, 39(2):209-215.
    [7] 田增艳,杨贺卫,李晓涵,等. 大港油田页岩油水平井钻井液技术[J]. 石油钻探技术,2021,49(4):59-65. doi: 10.11911/syztjs.2021012

    TIAN Zengyan, YANG Hewei, LI Xiaohan, et al. Drilling fluid technology for horizontal shale oil wells in the dagang oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4):59-65. doi: 10.11911/syztjs.2021012
    [8] 史配铭,倪华峰,石崇东,等. 苏里格致密气藏超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2022,50(1):13-21. doi: 10.11911/syztjs.2021056

    SHI Peiming, NI Huafeng, SHI Chongdong, et al. Key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1):13-21. doi: 10.11911/syztjs.2021056
    [9] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28-36. doi: 10.11911/syztjs.2020050

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of well Hua H50-7 in the Changqing oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4):28-36. doi: 10.11911/syztjs.2020050
    [10] 程玉生,张立权,莫天明,等. 北部湾水基钻井液固相控制与重复利用技术[J]. 钻井液与完井液,2016,33(2):60-63.

    CHENG Yusheng, ZHANG Liquan, MO Tianming, et al. Solids control and re-use of water base drilling fluid in Beibu gulf[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):60-63.
    [11] AHMED H M, KAMAL M S, AL-HARTHI M. Polymeric and low molecular weight shale inhibitors: A review[J]. Fuel, 2019, 251:187-217. doi: 10.1016/j.fuel.2019.04.038
    [12] JIANG G C, WANG K, HE Y B, et al. Synthesis of an amphoteric polymer as a high-temperature-resistant shale stabilizer in water-based drilling fluids[J]. Journal of Applied Polymer Science, 2020, 137(35):49016. doi: 10.1002/app.49016
    [13] LYU Q, RANJITH P G, LONG X P, et al. A review of shale swelling by water adsorption[J]. Journal of Natural Gas Science and Engineering, 2015, 27, Part 3: 1421-1431.
    [14] WILSON M, WILSON L. Clay mineralogy and shale instability: an alternative conceptual analysis[J]. Clay Minerals, 2014, 49(2):127-145. doi: 10.1180/claymin.2014.049.2.01
    [15] 白杨. 深井高温高密度水基钻井液性能控制原理研究[D]. 成都: 西南石油大学, 2014.

    BAI Yang. Performance control principle of deep water-based drilling fluids with high temperature and high density[D]. Chengdu: Southwest Petroleum University, 2014.
    [16] 鄢捷年. 钻井液工艺学[M]. 东营: 中国石油大学出版社, 2012.

    YAN Jienian. Drilling fluid technology[M]. Dongying: China University of Petroleum Press, 2012.
    [17] 常晓峰,孙金声,王清臣. 水平井和斜井井眼清洁技术研究进展及展望[J]. 钻井液与完井液,2023,40(1):1-19. doi: 10.12358/j.issn.1001-5620.2023.01.001

    CHANG Xiaofeng, SUN Jinsheng, WANG Qingchen. Hole cleaning technology for horizontal and deviated drilling: progress made and prospect[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):1-19. doi: 10.12358/j.issn.1001-5620.2023.01.001
    [18] JIANG G C, PENG S L, LI X L, et al. Preparation of amphoteric starch-based flocculants by reactive extrusion for removing useless solids from water-based drilling fluids[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 558:343-350.
    [19] 蒋官澄,李新亮,彭双磊,等. 一种亚微米固相絮凝剂的合成及性能评价[J]. 钻井液与完井液,2017,34(4):15-19. doi: 10.3969/j.issn.1001-5620.2017.04.003

    JIANG Guancheng, LI Xinliang, PENG Shuanglei, et al. Synthesis and evaluation of a submicron solid flocculant GCS[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):15-19. doi: 10.3969/j.issn.1001-5620.2017.04.003
    [20] 李新亮,蒋官澄,彭双磊,等. 长链烷烃季铵盐DODMAC对钻井液中劣质固相的絮凝作用[J]. 油田化学,2017,34(3):397-401,421. doi: 10.19346/j.cnki.1000-4092.2017.03.004

    LI Xinliang, JIANG Guancheng, PENG Shuanglei, et al. Flocculation performance of long chain alkyl quarternary ammonium salt DODMAC for inferior solid phase in the drilling fluid[J]. Oilfield Chemistry, 2017, 34(3):397-401,421. doi: 10.19346/j.cnki.1000-4092.2017.03.004
  • 加载中
图(8)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  87
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-18
  • 修回日期:  2023-04-23
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回