留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于页岩油钻井的低伤害防塌水基钻井液体系

艾磊 高云文 欧阳勇 辛庆庆 周宇

艾磊,高云文,欧阳勇,等. 适用于页岩油钻井的低伤害防塌水基钻井液体系[J]. 钻井液与完井液,2023,40(5):602-610 doi: 10.12358/j.issn.1001-5620.2023.05.008
引用本文: 艾磊,高云文,欧阳勇,等. 适用于页岩油钻井的低伤害防塌水基钻井液体系[J]. 钻井液与完井液,2023,40(5):602-610 doi: 10.12358/j.issn.1001-5620.2023.05.008
AI Lei, GAO Yunwen, OUYANG Yong, et al.Low damage highly inhibitive water based drilling fluid for drilling shale oil reservoir[J]. Drilling Fluid & Completion Fluid,2023, 40(5):602-610 doi: 10.12358/j.issn.1001-5620.2023.05.008
Citation: AI Lei, GAO Yunwen, OUYANG Yong, et al.Low damage highly inhibitive water based drilling fluid for drilling shale oil reservoir[J]. Drilling Fluid & Completion Fluid,2023, 40(5):602-610 doi: 10.12358/j.issn.1001-5620.2023.05.008

适用于页岩油钻井的低伤害防塌水基钻井液体系

doi: 10.12358/j.issn.1001-5620.2023.05.008
基金项目: 中国石油天然气股份有限公司科学研究与技术开发项目“中低熟页岩油原位转化基础理论硏究与关键技术开发及先导试验”(2021DJ5203)。
详细信息
    作者简介:

    艾磊,工程师,1986年生,毕业于西南石油大学石油工程专业,现在从事钻井工艺技术研究工作。电话(029)86590723;E-mail:surenyigezy@126.com。

  • 中图分类号: TE254

Low Damage Highly Inhibitive Water Based Drilling Fluid for Drilling Shale Oil Reservoir

  • 摘要: 长73页岩储层发育微纳米级孔缝,地层岩石强度低,钻井液滤液易侵入储层造成井壁失稳和储层伤害。厘清了长73页岩井壁失稳机理及钻井液技术难点,借鉴“1/3和2/3架桥封堵规则”,引入刚性和可变形封堵材料,构建了广谱型多级粒径分布区间。以瞬时滤失量为评价指标,通过曲面响应建模优化出最佳配比,室内优选了防塌抑制剂组合,在此基础上研发出一套低伤害强防塌水基钻井液体系,评价实验结果表明,所构建的钻井液能够有效平衡地层坍塌应力,老化后静置72 h流变性依旧良好,抑制性强,页岩线性膨胀率较清水环境和现场钻井液分别降低了16.74%和13.61%;封堵性显著,瞬时滤失量仅为1 mL,对岩心的封堵率高达93.5%,储层保护性好,泥饼清除后岩心板中无孔喉堵塞现象,渗透率恢复值高达95.2%;润滑性能适中,钻井液老化前后摩阻系数均保持在0.08左右,现场试验水平段平均井径扩大率仅为4.27%,平均机械钻速可达18.4 m/h,钻进期间水平段无井下复杂事故,各项性能能够满足长73页岩油水平井钻井的需要。

     

  • 图  1  长73储层页岩扫描电镜图

    图  2  不同封堵材料的粒径分布图和累积粒度分布图

    图  3  实验点三角图

    图  4  封堵材料X2X3在不同比例组合下 与瞬时滤失量Y之间的曲面响应图

    图  5  封堵材料在最优比例组合下的粒径分布图

    图  6  不同防塌抑制剂的评价实验

    图  7  线性膨胀实验评价

    图  8  不同钻井液的封堵性能评价实验

    图  9  封堵性能评价实验

    图  10  庆HX-3井与邻井的现场实钻工况

    表  1  长73页岩全岩矿物衍射分析 %

    石英斜长石钾长石正长石黄铁矿碳酸盐TCCM
    46.428.2813.562.955.350.6822.76
    下载: 导出CSV

    表  2  长73地层岩石力学参数分析

    地层
    岩性
    取心深度/
    m
    泊松比弹性模量/
    MPa
    内摩擦角/
    (°)
    地层坍塌压力
    当量密度/(g·cm−3
    地层破裂压力
    当量密度/(g·cm−3
    最大剪应力/
    MPa
    抗剪强度/
    MPa
    页岩2420.000.2620.3027.531.222.1820.3018.30
    下载: 导出CSV

    表  3  多级封堵材料粒径分布区间

    代号级别封堵材料种类D50/
    μm
    备注
    X1一级(刚性)8000目碳酸钙
    (现场)
    1.62 μm的2/3~1/1
    X2二级(刚性)10 000目碳酸钙1.32 μm的1/3~2/3
    X3三级(可变形)G325(现场)0.76<2 μm的1/3
    下载: 导出CSV

    表  4  模型方程各参数及误差分析

    方程
    系数
    数值标准
    误差
    Reduced
    Chi-Sqr
    残差平
    方和
    R2调整R2
    a32.186 28 0.959 060.327 77 3.605 47 0.968 57 0.952 14
    b−0.746 32 0.065 61
    c−0.719 44 0.040 18
    d0.007 34 8.054 76×
    10−4
    e0.004 61 3.723 16×
    10−4
    f0.007 29 7.915 67×
    10−4
    下载: 导出CSV

    表  5  不同密度下钻井液流变性能评价

    ρ/(g·cm−3测试条件AV/mPa·sPV/mPa·sYP/PaGel/(Pa/Pa)YP/PV/(Pa/mPa ·s)FLAPI/mLpH
    1.20老化前24.515.09.54.5/8.00.632.28.0
    老化后25.517.08.53.0/6.00.502.68.0
    1.30老化前29.516.013.55.0/9.00.843.68.0
    老化后31.519.012.54.0/8.00.663.68.0
    1.40老化前32.019.013.05.0/9.00.684.58.0
    老化后31.519.012.54.0/8.00.664.58.0
      注:钻井液体系加重材料选用重晶石,老化条件:120 ℃×16 h,静置72 h。
    下载: 导出CSV

    表  6  岩样滚动回收率评价

    层位实验方案初始质量/
    g
    回收质量/
    g
    岩样回收率/
    %
    长73清水50.043.687.2
    现场钻井液50.046.292.4
    强封堵防塌钻井液50.048.897.6
      注:老化条件:120 ℃×16 h。
    下载: 导出CSV

    表  7  储层保护性能评价

    岩心
    编号
    驱替
    介质
    T/
    t/
    h
    K/mD封堵率/
    %
    渗透率恢复/
    %
    伤害前正向伤害后正向伤害后反向
    1#煤油65.02.014.984.5610.8869.672.6
    2#2.015.601.0114.8593.595.2
      注:1#为现场钻井液;2#为低伤害强防塌水基钻井液。
    下载: 导出CSV
  • [1] 姚兰兰. 页岩油储层微观孔隙结构特征评价及渗流机理研究[D]. 廊坊:中国科学院大学(中国科学院渗流流体力学研究所),2021:6-9.

    YAO Lanlan. Evaluation of microscopic pore structure characteristics and flow mechanism of shale oil reservoirs[D]. Langfang: University of Chinese Academy of Sciences (Institute of Porous Flow and Fluid Mechanics), 2021 :6-9.
    [2] 国家市场监督管理总局,国家标准化管理委员.GB/T 38718-2020.页岩油地质评价方法[S].北京:中国标准出版社,2020.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 38718-2020. Geological evaluating methods for shale oil[S]. Beijing: Standards Press of China, 2020.
    [3] 肖玲, 陈曦, 雷宁, 等. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏,2023,35(2):80-93.

    XIAO Ling, CHEN Xi, LEI Ning, et al. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos basin[J]. Lithologic Reservoirs, 2023, 35(2): 80-93.
    [4] 周小航,陈冬霞,夏宇轩,等. 鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素[J]. 地球科学,2022,47(8):3045-3055. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208027

    ZHOU Xiaohang, CHEN Dongxia, XIA Yuxuan, et al. Spontaneous imbibition characteristics and influencing factors of Chang 7 shale oil reservoirs in Longdong area, Ordos basin[J]. Earth Science, 2022, 47(8):3045-3055. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208027
    [5] 杜晓宇, 金之钧, 曾联波, 等. 鄂尔多斯盆地陇东地区长7页岩油储层天然裂缝发育特征与控制因素[J]. 地球科学, 2023, 48(7): 2589-2600.

    DU Xiaoyu, JIN Zhijun, ZENG Lianbo, et al. Development characteristics and controlling factors of natural fractures in Chang 7 shale oil reservoir, Longdong area, Ordos basin[J]. Earth Science, 2023, 48(7): 2589-2600.
    [6] 肖玲,胡榕,韩永林,等. 鄂尔多斯盆地新安边地区长7页岩油储层孔隙结构特征[J]. 成都理工大学学报(自然科学版),2022,49(3):284-293.

    XIAO Ling, HU Rong, HAN Yonglin, et al. Characteristics of pore throat structure of Chang 7 shale oil sandstone reservoir in the western Xin'anbian area, Ordos basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(3):284-293.
    [7] DEVILLE J P, FRITZ B, JARRETT M. Development of water-based drilling fluids customized for shale reservoirs[J]. SPE Drilling & Completion, 2011, 26(4):484-491.
    [8] BLAND R G, WAUGHMAN R R, TOMKINS P G, et al. Water-based alternatives to oil-based muds: do they actually exist?[C]//IADC/SPE Drilling Conference. Dallas, Texas: SPE, 2002: SPE-74542-MS.
    [9] 徐志勇. 高性能水基钻井液技术研究进展[J]. 西部探矿工程,2022,34(5):76-77, 79.

    XU Zhiyong. Research progress of high performance water-based drilling fluid technology[J]. West-China Exploration Engineering, 2022, 34(5): 76-77, 79.
    [10] 赵小平,孙强. 环境友好型水基钻井液技术研究新进展[J]. 山东化工,2018,47(20):52-53. doi: 10.3969/j.issn.1008-021X.2018.20.020

    ZHAO Xiaoping, SUN Qiang. New progress in the research of environment-friendly water-based drilling fluid technology[J]. Shandong Chemical Industry, 2018, 47(20):52-53. doi: 10.3969/j.issn.1008-021X.2018.20.020
    [11] ABRAMS, A. Mud design to minimize rock impairment due to particle invasion.[J]. Journal of Petroleum Technology, 1977, 29(5):586-592. doi: 10.2118/5713-PA
    [12] DA ROCHA H O, DA COSTA J L S, CARRASQUILLA A A G, et al. Petrophysical characterization using well log resistivity and rock grain specific surface area in a fractured carbonate pre-salt reservoir in the Santos basin, Brazil[J]. Journal of Petroleum Science and Engineering, 2019, 183:106372. doi: 10.1016/j.petrol.2019.106372
    [13] 刘大伟,康毅力,雷鸣,等. 保护碳酸盐岩储层屏蔽暂堵技术研究进展[J]. 钻井液与完井液,2008,25(5):57-61. doi: 10.2118/1652-G-PA

    LIU Dawei, KANG Yili, LEI Ming, et al. Research progresses in temporary plugging technology for carbonate reservoir protection[J]. Drilling Fluid & Completion Fluid, 2008, 25(5):57-61. doi: 10.2118/1652-G-PA
    [14] HANDS N, KOWBEL K, MAIKRANZ S, et al. Drill-in fluid reduces formation damage, increases production rates[J]. Oil & Gas Journal, 1998, 96(28):65-69.
    [15] 蒋官澄,毛蕴才,周宝义,等. 暂堵型保护油气层钻井液技术研究进展与发展趋势[J]. 钻井液与完井液,2018,35(2):1-16.

    JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al. Progress made and trend of development in studying on temporarily type plugging reservoir protection drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):1-16.
    [16] 徐同台,陈永浩,冯京海,等. 广谱型屏蔽暂堵保护油气层技术的探讨[J]. 钻井液与完井液,2003,20(2):39-41.

    XU Tongtai, CHEN Yonghao, FENG Jinghai, et al. The general-purpose temporary shield plugging technology in protecting hydrocarbon reservoir[J]. Drilling Fluid & Completion Fluid, 2003, 20(2):39-41.
    [17] 马毅超. 封堵型防塌水基钻井液技术研究[D]. 成都: 西南石油大学石油工程学院, 2016: 1–10.

    MA Yichao. Research on the technology of plugging type anti-collapse water-based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2016.
    [18] 马成云,宋碧涛,徐同台,等. 钻井液用纳米封堵剂研究进展[J]. 钻井液与完井液,2017,34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001

    MA Chengyun, SONG Bitao, XU Tongtai, et al. Research progress of nano plugging agents for drilling fluids[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):1-8. doi: 10.3969/j.issn.1001-5620.2017.01.001
    [19] JI L J, GUO Q X, FRIEDHEIM J, et al. Laboratory evaluation and analysis of physical shale inhibition of an innovative water-based drilling fluid with nanoparticles for drilling unconventional shales[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Perth, Australia: SPE, 2012: SPE-158895-MS.
    [20] LI Z Y, ZHOU Y, QU L, et al. A new method for designing the bridging particle size distribution for fractured carbonate reservoirs[J]. SPE Journal, 2022, 27(5):2552-2562. doi: 10.2118/209617-PA
    [21] 马腾飞,周宇,李志勇,等. 新型低伤害高性能微泡沫钻井液性能评价与现场应用[J]. 油田化学,2021,38(4):571-579. doi: 10.19346/j.cnki.1000-4092.2021.04.001

    MA Tengfei, ZHOU Yu, LI Zhiyong, et al. Evaluation and field application of new microfoam drilling fluid with low-damage and high-performance[J]. Oilfield Chemistry, 2021, 38(4):571-579. doi: 10.19346/j.cnki.1000-4092.2021.04.001
    [22] 王建华,李建男,闫丽丽,等. 油基钻井液用纳米聚合物封堵剂的研制[J]. 钻井液与完井液,2013,30(6):5-8,91. doi: 10.3969/j.issn.1001-5620.2013.06.002

    WANG Jianhua, LI Jiannan, YAN Lili, et al. The development and performance evaluation of plugging agent for oil-base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2013, 30(6):5-8,91. doi: 10.3969/j.issn.1001-5620.2013.06.002
    [23] SAVARI S, KUMAR A, WHITFILL D L, et al. Improved lost circulation treatment design and testing techniques minimize formation damage[C]//SPE European Formation Damage Conference. Noordwijk, The Netherlands: SPE, 2011: SPE-143603-MS.
    [24] KULKARNI S, SAVARI S, KUMAR A, et al. Novel rheological Tool to determine lost circulation materials (LCM) plugging performance[C]//North Africa Technical Conference and Exhibition. Cairo, Egypt: SPE, 2012: SPE-150726-MS.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  103
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-05-25
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回