留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酰胺型润滑剂极性片段在铁表面的吸附作用

刘超 卢福伟 王伟 张顺从 唐玉华 王腾飞 郭婷婷

刘超,卢福伟,王伟,等. 酰胺型润滑剂极性片段在铁表面的吸附作用[J]. 钻井液与完井液,2023,40(5):578-585 doi: 10.12358/j.issn.1001-5620.2023.05.005
引用本文: 刘超,卢福伟,王伟,等. 酰胺型润滑剂极性片段在铁表面的吸附作用[J]. 钻井液与完井液,2023,40(5):578-585 doi: 10.12358/j.issn.1001-5620.2023.05.005
LIU Chao, LU Fuwei, WANG Wei, et al.Adsorption of polar fragments of amide lubricants on iron surface[J]. Drilling Fluid & Completion Fluid,2023, 40(5):578-585 doi: 10.12358/j.issn.1001-5620.2023.05.005
Citation: LIU Chao, LU Fuwei, WANG Wei, et al.Adsorption of polar fragments of amide lubricants on iron surface[J]. Drilling Fluid & Completion Fluid,2023, 40(5):578-585 doi: 10.12358/j.issn.1001-5620.2023.05.005

酰胺型润滑剂极性片段在铁表面的吸附作用

doi: 10.12358/j.issn.1001-5620.2023.05.005
基金项目: 国家科技重大专项“大型油气田及煤层气开发”(2017ZX05049003-007);国家自然科学基金青年项目“油页岩空气/CO2交替注入原位燃烧催化改质机理及相间反应-传质规律研究”(42202182)。
详细信息
    作者简介:

    刘超,现在主要从事油田化学研究工作。电话(0716)8060442;E-mail:337630773@qq.com。

    通讯作者:

    卢福伟,E-mail:lufuwei@yangtzeu.edu.cn

  • 中图分类号: TE254.4

Adsorption of Polar Fragments of Amide Lubricants on Iron Surface

  • 摘要: 针对深井、超深井、大位移井和水平井等复杂境况带来的高温、高摩阻环境,利用DFT模拟方法,分析了油酸酰胺亲水链段中伯胺基、仲胺基、酰胺基和羟基等极性片段在铁(001)表面的吸附作用力,进一步探究油酸酰胺类润滑剂在铁表面的吸附润滑机理。结果表明,酰胺基、伯胺基、羟基在Fe(001)面上的桥位产生稳定吸附,仲胺基在Fe(001)面上顶位产生最稳定吸附,吸附能从大到小依次为伯胺基、仲胺基、羟基、酰胺基。布居数分析结果表明,4种极性基团在吸附过程中轨道布居数均发生变化,从Fe(001)面得到电子,其中仲胺基得到0.16e电子,伯胺基和酰胺基得到0.09e电子,羟基得到电子数最少,为0.08e。态密度分析结果表明,仲胺基和伯胺基中N原子的2p轨道与铁原子的3p、4s轨道间有态密度重叠,存在化学成键作用。在极压润滑测试和四球摩擦实验中,油酸二乙烯三胺的润滑系数降低率为83.6%,高于油酸二乙醇酰胺的78.2%;摩斑半径为287.184 μm,小于油酸二乙醇酰胺的摩斑半径,表明含有胺基与酰胺基的润滑材料润滑性能优于含有羟基的表面活性剂。

     

  • 图  1  油酸酰胺亲水链段极性片段模型

    图  2  油酸酰胺亲水链段极性片段在 Fe(001)面的模型

    图  3  极性片段在Fe(001)面的稳定吸附构型

    图  4  极性片段在Fe (001)表面吸附后的电子云分布

    图  5  伯胺基片段在Fe(001)面成键的分态密度图

    图  6  仲胺基片段在Fe(001)面成键的分态密度图

    图  7  乙酰胺片段在Fe(001)面成键的分态密度图

    图  8  羟乙基片段在Fe(001)面成键的分态密度图

    图  9  钢球摩斑图

    表  1  极性片段在Fe (001)面吸附前后电荷数 (e)

    极性片段吸附前总电荷数吸附后总电荷数电荷转移数
    伯胺基片段0.01−0.080.09
    仲胺基片段−0.01−0.170.16
    酰胺基片段−0.01−0.10.09
    羟基片段0.01−0.070.08
    下载: 导出CSV

    表  2  润滑材料在基浆中性能测试

    润滑
    材料
    ρ基浆/
    g·cm−3
    AV/
    mPa·s
    润滑系数降低率/
    %
    基浆1.0314
    油酸酰胺1.021580.9
    油酸二乙烯三胺1.021583.6
    油酸二乙醇酰胺0.892078.2
    下载: 导出CSV
  • [1] 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田,2021,28(6):761-764.

    SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil and Gas Field, 2021, 28(6):761-764.
    [2] 张永耀,侯树岭. 页岩油定向井水平井摩阻分析探讨[J]. 石化技术,2020,27(11):140-141. doi: 10.3969/j.issn.1006-0235.2020.11.059

    ZHANG Yongyao, HOU Shuling. Analysis and discussion on frictional resistance of horizontal well in shale oil directional well[J]. Petrochemical Industry Technology, 2020, 27(11):140-141. doi: 10.3969/j.issn.1006-0235.2020.11.059
    [3] 武金平. 分析定向井水平井摩阻控制与优化处理[J]. 石化技术,2020,27(1):350-352. doi: 10.3969/j.issn.1006-0235.2020.01.222

    WU Jinping. Analysis of horizontal well friction control and optimization of directional wells[J]. Petrochemical Industry Technology, 2020, 27(1):350-352. doi: 10.3969/j.issn.1006-0235.2020.01.222
    [4] 魏佳怡,李月红,于文婧,等. 环保型水基钻井液润滑剂的研究进展[J]. 化工技术与开发,2021,50(6):36-40. doi: 10.3969/j.issn.1671-9905.2021.06.010

    WEI Jiayi, LI Yuehong, YU Wenjing, et al. Research progress of environmental friendly water based drilling fluid lubricant[J]. Technology & Development of Chemical Industry, 2021, 50(6):36-40. doi: 10.3969/j.issn.1671-9905.2021.06.010
    [5] 李公让,王承俊. 极性吸附钻井液润滑剂的研究进展与发展趋势[J]. 钻井液与完井液,2020,37(5):541-549.

    LI Gongrang, WANG Chengjun. Research progress made and development trend of drilling fluid lubricants with polar adsorption ability[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):541-549.
    [6] 管申,何淼,曹峰,等. 环保强吸附水基润滑剂BM-1的研制与评价[J]. 精细石油化工,2021,38(4):6-10. doi: 10.3969/j.issn.1003-9384.2021.04.002

    GUAN Shen, HE Miao, CAO Feng, et al. Development and evaluation of environment-friendly strong adsorption lubricant BM-1[J]. Speciality Petrochemicals, 2021, 38(4):6-10. doi: 10.3969/j.issn.1003-9384.2021.04.002
    [7] 王承俊. 植物油改性钻井液润滑剂的合成与性能研究[J]. 山东化工,2022,51(11):7-9.

    WANG Chengjun. Preparation of vegetable modified lubricant for drilling fluid and research on its lubricating performance[J]. Shandong Chemical Industry, 2022, 51(11):7-9.
    [8] 孙丙向,李文博. 氨解改性大豆卵磷脂钻井液润滑剂[J]. 钻井液与完井液,2022,39(2):164-170.

    SUN Bingxiang, LI Wenbo. Ammonolysis modified soybean lecithin as a drilling fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):164-170.
    [9] 张顺从,戴尧,徐浩,等. 油酸酰胺型润滑剂在铁表面减摩作用[J]. 钻井液与完井液,2022,39(5):596-600. doi: 10.12358/j.issn.1001-5620.2022.05.010

    ZHANG Shuncong, DAI Yao, XU Hao, et al. Friction reduction of oleamide lubricants on iron surface[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):596-600. doi: 10.12358/j.issn.1001-5620.2022.05.010
    [10] 张冬,程延海,冯世哲,等. 溶氧水在Fe(001)表面吸附的第一性原理研究[J]. 河北科技大学学报,2018,39(1):24-34. doi: 10.7535/hbkd.2018yx01004

    ZHANG Dong, CHENG Yanhai, FENG Shizhe, et al. First principles study of dissolved oxygen water adsorption on Fe (001) surfaces[J]. Journal of Hebei University of Science and Technology, 2018, 39(1):24-34. doi: 10.7535/hbkd.2018yx01004
    [11] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567-570.
    [12] 李震宇,贺伟,杨金龙. 密度泛函理论及其数值方法新进展[J]. 化学进展,2005,17(2):192-202. doi: 10.3321/j.issn:1005-281X.2005.02.003

    LI Zhenyu, HE Wei, YANG Jinlong. Recent progress in density functional theory and its numerical methods[J]. Progress in Chemistry, 2005, 17(2):192-202. doi: 10.3321/j.issn:1005-281X.2005.02.003
    [13] 伊丁,武镇,杨柳,等. 有机分子在铁磁界面处的自旋极化研究[J]. 物理学报,2015,64(18):203-208. doi: 10.7498/aps.64.187305

    YI Ding, WU Zhen, YANG Liu, et al. Spin-polarization of organic molecules at the ferromagnetic surface[J]. Acta Physica Sinica, 2015, 64(18):203-208. doi: 10.7498/aps.64.187305
    [14] FLETCHER R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3):317-322. doi: 10.1093/comjnl/13.3.317
    [15] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892
    [16] 王宗轮,孙金声,刘敬平,等. 耐高温高盐钻井液润滑剂的研制与性能评价[J]. 钻井液与完井液,2022,39(5):538-544.

    WANG Zonglun, SUN Jinsheng, LIU Jingping, et al. Development and performance evaluation of high temperature salt resistant drilling lubricant[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):538-544.
    [17] 张立权,侯珊珊,吴宇,等. 钻井液用环保润滑剂研究进展及发展趋势[J]. 油田化学,2022,39(1):163-169.

    ZHANG Liquan, HOU Shanshan, WU Yu, et al. Research progress and development trend of environmentally friendly lubricants for drilling fluids[J]. Oilfield Chemistry, 2022, 39(1):163-169.
    [18] 杨川,孟祥娟,赛亚尔·库西马克,等. 钻井液用润滑剂与螺杆橡胶的配伍性[J]. 钻井液与完井液,2023,40(1):60-66.

    YANG Chuan, MENG Xiangjuan, KOXMAK Sayyara, et al. Study on compatibility of drilling fluid lubricants and screw rubbers[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):60-66.
    [19] YAN J J, BOCKSTALLER M R, MATYJASZEWSKI K. Brush-modified materials: control of molecular architecture, assembly behavior, properties and applications[J]. Progress in Polymer Science, 2020, 100:101180.
    [20] WANG Y J, JIA D, PAN J G, et al. Multiple-phase tectonic superposition and reworking in the Junggar basin of northwestern China-implications for deep-seated petroleum exploration[J]. AAPG Bulletin, 2018, 102(8):1489-1521.
    [21] 陶怀志,明显森,马光长,等. 水基钻井液强吸附多元醇酯键合润滑剂及作用机理[J]. 钻井液与完井液,2022,39(5):579-586.

    TAO Huaizhi, MING Xiansen, MA Guangchang, et al. Study on mechanisms of a highly adsorptive polyol ester bonded lubricant for water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):579-586.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  89
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-05-28
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回