Research on a New Method for Simulation of Fractured Plugging Based on 3D Scanning and Printing Technology
-
摘要: 塔里木油田博孜区块钻井过程中漏失频发,钻井液损失量大,造成巨大的经济损失,是目前该区块勘探开发的一大难点。现有的传统裂缝堵漏模拟方法较难真实模拟井下裂缝条件,导致室内实验效果与现场应用差异较大。以博孜区块为例,通过对其储层特征进行分析,明确储层漏失成因为天然裂缝漏失与薄弱地层破裂;基于3D扫描打印技术,制作具有储层真实裂缝特征的仿真缝板,以此为核心建立了一种裂缝性堵漏模拟新方法,使用自主研制的堵漏仪器开展了不同裂缝宽度下的堵漏配方评价实验。实验结果表明,裂缝性堵漏模拟新方法适用于多尺度裂缝性地层堵漏配方模拟评价,能够为针对裂缝性漏失的现场堵漏配方测试提供有力支持。Abstract: The frequent leakage and large loss of drilling fluid during drilling in Bozi area of Tarim Oilfield have caused huge economic losses, which is a major difficulty in exploration and development in this area at present. The existing traditional fracture plugging simulation method is difficult to simulate the downhole fracture conditions, resulting in a large difference between the indoor experimental results and the field application. Taking the Bozi area as an example, through the analysis of its reservoir characteristics, it is clear that the reservoir leakage is caused by natural fracture leakage and weak formation fracture; Based on 3D scanning and printing technology, a simulation fracture plate with real fracture characteristics of the reservoir is made, and a new method of fracture plugging simulation is established with this as the core. The evaluation experiment of plugging formula under different fracture widths is carried out using self-developed plugging instrument. The experimental results show that the new method of fracture plugging simulation is applicable to the simulation and evaluation of the plugging formula in multi-scale fractured formations, and can provide strong support for the on-site testing of the plugging formula for fracture loss.
-
表 1 博孜区块岩心裂缝发育情况
井号 岩性 取心长度/m 裂缝数/条 线密度/(条/m) 缝宽/mm 主要充填方式 博孜301 中粗砂岩 17.34 132 7.60 0.10~3.00 半充填/完全充填 博孜15 中-粗砂岩 8.50 11 1.30 0.10~2.00 未充填 博孜1801 细砾岩、砂砾岩 4.65 17 3.70 0.01~0.12 未充填 博孜1203 细砂岩、中砂岩 15.91 73 4.59 0.10~1.00 未充填/半-全充填 表 2 裂缝粗糙度、迂曲度参数数据
组号 数据来源 裂缝粗糙度 裂缝迂曲度 Z2 JRC 误差/% τx τy τ 误差/% 1# 博孜12井目的层取心 1.930 41.458 0.984 1.125 1.052 树脂打印缝板 1.863 40.974 1.17 0.974 1.103 1.036 1.52 金属打印缝板 1.989 41.897 1.06 0.991 1.148 1.067 1.43 2# 博孜1203井目的层取心 3.427 49.541 0.992 1.174 1.079 树脂打印缝板 3.215 48.668 1.76 0.981 1.151 1.063 1.48 金属打印缝板 3.602 50.271 1.47 1.003 1.191 1.093 1.30 表 3 实验所用堵漏材料相关参数
堵漏材料系列 组分 材料型号 粒径/目 形貌 QSD系列 硬质果壳 QSD-1 9~30 颗粒状 QSD-2 6~20 颗粒状 KGD系列 方解石 KGD-1 30~70 颗粒状 KGD-2 20~40 颗粒状 KGD-3 9~24 颗粒状 KGD-4 5~16 颗粒状 KGD-5 3~6 颗粒状 BYD系列 高分子化合物 粉末状 表 4 不同尺度缝宽堵漏配方及实验结果
缝宽/
mm实验
序号堵漏
配方浓度/
%最高承压/
MPa累积漏失量/
mL1 ① 0.4%QSD-1+0.4%KGD-3+3.1%KGD-2+3.1%KGD-1+2%BYD 9 21.47 134 ② 0.7%QSD-1+0.8%KGD-3+2.1%KGD-2+3.4%KGD-1+2%BYD 9 24.03 121 ③ 1.2%QSD-1+1.3%KGD-3+2%KGD-2+2.5%KGD-1+2%BYD 9 16.22 242 3 ④ 4%KGD-3+3%KGD-2+3%KGD-1 +4%BYD 14 0 2000 ⑤ 2%KGD-4+4%KGD-3+3%KGD-2+3%KGD-1 +4%BYD 16 14.47 367 ⑥ 4%KGD-4+4%KGD-3+3%KGD-2+3%KGD-1 +4%BYD 18 16.09 259 5 ⑦ 3%KGD-4+4%KGD-3+4%KGD-2+3%KGD-1+4%BYD 18 0 2000 ⑧ 3%KGD-5+3%KGD-4+4%KGD-3+4%KGD-2 +3%KGD-1+4%BYD 21 17.40 230 ⑨ 6% KGD-5+3%KGD-4+4%KGD-3+4%KGD-2 +3%KGD-1+4%BYD 24 9.92 576 -
[1] 王珂,张荣虎,曾庆鲁,等. 库车坳陷博孜-大北区块下白垩统深层-超深层储层特征及成因机制[J]. 中国矿业大学学报,2022,51(2):311-328. doi: 10.3969/j.issn.1000-1964.2022.2.zgkydxxb202202010WANG Ke, ZHANG Ronghu, ZENG Qinglu, et al. Characteristics and formation mechanism of Lower Cretaceous deep and ultra-deep reservoir in Bozi-Dabei area, Kuqa depression[J]. Journal of China University of Mining & Technology, 2022, 51(2):311-328. doi: 10.3969/j.issn.1000-1964.2022.2.zgkydxxb202202010 [2] 殷召海,李国强,王海,等. 克拉苏构造带博孜 1 区块复杂超深井钻井完井关键技术[J]. 石油钻探技术,2021,49(1):16-21. doi: 10.11911/syztjs.2020130YIN Zhaohai, LI Guoqiang, WANG Hai, et al. Key technologies for drilling and completing ultra-deep wells in the Bozi 1 block of Kelasu structure[J]. Petroleum Drilling Techniques, 2021, 49(1):16-21. doi: 10.11911/syztjs.2020130 [3] 郭宝利,袁孟雷,孟尚志,等. 一种新型堵漏模拟装置[J]. 钻井液与完井液,2003,20(4):47-49. doi: 10.3969/j.issn.1001-5620.2003.04.017GUO Baoli, YUAN Menglei, MENG Shangzhi, et al. A novel lost circulation simulator[J]. Drilling Fluid & Completion Fluid, 2003, 20(4):47-49. doi: 10.3969/j.issn.1001-5620.2003.04.017 [4] 胡三清. JLX-2 动态堵漏实验仪的研制[J]. 石油机械,2000,28(6):13-15. doi: 10.3969/j.issn.1001-4578.2000.06.005HU Sanqing. Model JLX-2 dynamic loss plugging tester[J]. China Petroleum Machinery, 2000, 28(6):13-15. doi: 10.3969/j.issn.1001-4578.2000.06.005 [5] 余维初,苏长明,鄢捷年. 高温高压动态堵漏评价系统[J]. 钻井液与完井液,2009,26(1):20-22. doi: 10.3969/j.issn.1001-5620.2009.01.008YU Weichu, SU Changming, YAN Jienian. HTHP dynamic system for lost circulation evaluation[J]. Drilling Fluid & Completion Fluid, 2009, 26(1):20-22. doi: 10.3969/j.issn.1001-5620.2009.01.008 [6] 尹达,刘锋报,康毅力,等. 库车山前盐膏层钻井液漏失成因类型判定[J]. 钻采工艺,2019,42(5):121-123. doi: 10.3969/J.ISSN.1006-768X.2019.05.37YIN Da, LIU Fengbao, KANG Yili , et al. Kuche thrust of drilling fluid loss salt-gypsum type determination genesis[J]. Drilling & Production Technology, 2019, 42(5):121-123. doi: 10.3969/J.ISSN.1006-768X.2019.05.37 [7] 李宁,李龙,王涛,等. 库车山前盐膏层与目的层漏失机理分析与治漏措施研究[J]. 广东化工,2020,48(11):101-103. doi: 10.3969/j.issn.1007-1865.2020.11.041LI Ning, LI Long, WANG Tao, et al. Leakage mechanism analysis and leakage control measures of salt gypsum layer and target layer in front of Kuqa mountain[J]. Guangzhou Chemical Industry, 2020, 48(11):101-103. doi: 10.3969/j.issn.1007-1865.2020.11.041 [8] 张杨,王振兰,范文同,等. 基于裂缝精细评价和力学活动性分析的储层改造方案优选及其在博孜区块的应用[J]. 中国石油勘探,2017,22(6):47-58. doi: 10.3969/j.issn.1672-7703.2017.06.006ZHANG Yang, WANG Zhenlan, FAN Wentong, et al. Optimization of reservoir stimulation scheme based on fine fracture evaluation and mechanical activity analysis and its application in Bozi block[J]. China Petroleum Exploration, 2017, 22(6):47-58. doi: 10.3969/j.issn.1672-7703.2017.06.006 [9] 孙辅庭,佘成学,万利台. Barton标准剖面JRC与独立于离散间距的统计参数关系研究[J]. 岩石力学与工程学报,2014,33(2):3539-3544. doi: 10.13722/j.cnki.jrme.2014.s2.018SUN Futing, SHE Chengxue, WAN Litai. Research on relationship between JRC of barton's standard profiles and statistic parameters independent of sampling interval[J]. chinese journal of rock mechanics and engineering, 2014, 33(2):3539-3544. doi: 10.13722/j.cnki.jrme.2014.s2.018 [10] 李化,黄润秋. 岩石结构面粗糙度系数JRC定量确定方法研究[J]. 岩石力学与工程学报,2014,33(S2):3489-3496. doi: 10.13722/j.cnki.jrme.2014.s2.012LI Hua, HUANG Runqiu. Method of quantitative determination of joint roughness coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2):3489-3496. doi: 10.13722/j.cnki.jrme.2014.s2.012 [11] STEPHEN R BROWN, CHRISTOPHER H,SCHOLZ. Closure of random elastic surfaces in contact[J]. Journal of Geophysical Research, 1985, 90(B7):5531-5545. doi: 10.1029/JB090iB07p05531 [12] BROWN S R, KRANZ R L. Correlation between the surfaces of natural rock joints[J]. Geophysical Research Letters, 1986, 13(13):1430-1433. doi: 10.1029/GL013i013p01430 [13] BROWN S R. Fluid flow through rock joints: The effect of surface roughness[J]. Journal of geophysical research, 1987, 92(B2):1337-1347. doi: 10.1029/JB092iB02p01337 [14] 张敬逸. 粗糙缝面裂缝内固相颗粒运移与滞留行为研究[D]. 成都: 西南石油大学, 2018.ZHANG Jingyi .Study on migration and retention behavior of solid particles in cracks with rough fracture surfacesr[D]. Chengdu: Southwest Petroleum University, 2018. [15] 曲冠政, 曲占庆, RANDY HAZLETT, 等. 页岩拉张型微裂缝几何特征描述及渗透率计算[J]. 石油勘探与开发, 2016, 43(1): 115-120.QU Guanzheng, QU Zhanqing,RANDY HAZLETT,et al. Geometrical description and permeability calculation about shale tensile micro-fractures[J]. Petroleum Exploration and Development. 2016, 43(1): 115-120. -