留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可解释性机器学习的ECD敏感性分析与预测技术

马磊 周波 张宁俊 杨恒 蔡新树 刘征 徐同台

马磊,周波,张宁俊,等. 基于可解释性机器学习的ECD敏感性分析与预测技术[J]. 钻井液与完井液,2023,40(5):563-570 doi: 10.12358/j.issn.1001-5620.2023.05.003
引用本文: 马磊,周波,张宁俊,等. 基于可解释性机器学习的ECD敏感性分析与预测技术[J]. 钻井液与完井液,2023,40(5):563-570 doi: 10.12358/j.issn.1001-5620.2023.05.003
MA Lei, ZHOU Bo, ZHANG Ningjun, et al.Ecd sensitivity analyses and prediction based on interpretable machine learning[J]. Drilling Fluid & Completion Fluid,2023, 40(5):563-570 doi: 10.12358/j.issn.1001-5620.2023.05.003
Citation: MA Lei, ZHOU Bo, ZHANG Ningjun, et al.Ecd sensitivity analyses and prediction based on interpretable machine learning[J]. Drilling Fluid & Completion Fluid,2023, 40(5):563-570 doi: 10.12358/j.issn.1001-5620.2023.05.003

基于可解释性机器学习的ECD敏感性分析与预测技术

doi: 10.12358/j.issn.1001-5620.2023.05.003
详细信息
    作者简介:

    马磊,工程师,1989年生,2015年毕业于中国石油大学材料工程专业,主要从事油田数值化转型、智能化发展相关工作。电话 18106432255;E-mail:malei1-tlm@petro china.com.cn

    通讯作者:

    杨恒,1999年生,23级在读博士,现在主要从事井漏分析、油气人工智能应用研究工作。E-mail:1337615119@qq.com

  • 中图分类号: TE254

ECD Sensitivity Analyses and Prediction Based on Interpretable Machine Learning

  • 摘要: 当量钻井液循环密度(ECD)计算过于繁琐耗时,且其敏感性规律尚未得到明确认识。为此,采用ProHydraulic软件对克深区带的1928个数据点进行分析,以确定ECD的理论值,并建立了相关的特征参数。同时,利用可解释性机器学习方法SHAP对钻井液特性、钻进参数和环空容积等关键因素进行了敏感性分析。最终,利用线性回归构建克深区带计算ECD的经验公式,涵盖了12个主要特征参数。结果表明,该模型表现优异,测试集决定系数达到0.963,平均绝对误差仅为0.04,为实际工程应用推出了简明、高效的经验公式。

     

  • 图  1  基于SHAP值对影响ECD的各特征重要性分析

    图  2  塑性黏度和动切力对ECD的影响

    图  3  环空体积对ECD的影响

    图  4  井深对ECD的影响

    图  5  固相含量对ECD的影响

    图  6  排量对ECD的影响

    图  7  入口温度和出口温度对ECD的影响

    图  8  考虑全因素的ECD理论值与预测值对比图

    图  9  简化模型的ECD理论值与预测值对比图

    表  1  博孜3-K2井ECD计算值与实测值 对比(基于ProHydraulic软件)  

    井深/
    m
    ρ出口/
    g·cm−3
    计算值/(g·cm−3ECD实测值/
    g·cm−3
    相对误
    差/%
    ESDECD
    50542.102.13902.17192.180.37
    54332.182.21482.28032.260.90
    54642.182.21772.28952.261.31
    57672.182.22132.27252.251.00
    59452.182.22112.28362.261.04
    下载: 导出CSV

    表  2  基于可解释性机器学习的ECD敏感性分析所采用的17个特征参数

    参数数据数量均值标准值25%值50%值75%值
    井深/m19286809.003 00834.103 2061257138.27447
    出口温度/℃192147.078 4510.897 62404555
    入口温度/℃192140.921 6912.054 89354048
    水眼面积/m3192819.920 5824.861 409.315 62715.205 3121.991 15
    ρ/(g·cm-319282.125 550.309 121.892.132.45
    Vs/%192640.191 078.557 10334049
    油含量/%192566.533 5133.503 38758285
    水含量/%192533.475 8433.499 20151825
    YP/Pa19286.307 263.322 03457.5
    PV/mPa·s192856.978 4829.863 78324583
    φ3
    19284.424 531.945 78345
    转速/(r·min-1183164.464 23346.403 10406580
    排量/(L·s-1192818.741 919.490 93131622
    V套管内/m31928290.783 1059.615 21243.771 90318.505328.689 60
    V钻具内/m3192862.839 5714.635 1153.315 1365.614 6871.946 99
    V钻具外/m3192792.858 4015.098 6381.452 6993.326 67101.928 10
    V裸眼内/m3190723.459 6855.783 042.277 205.774 82917.104 52
    ECD/(g·cm-319192.217 080.337 091.941 252.230 502.551 70
    下载: 导出CSV

    表  3  基于简化模型训练结果获得的参数回归系数对照表

    参数回归系数
    ρ/(g·cm-31.10
    PV/mPa·s−1.11×10−4
    V套管内/m3−1.22×10−3
    Vs/%−1.80×10−3
    V钻具内/m3−1.62×10−3
    油含量/%−2.38×10−4
    入口温度/℃2.04×10−3
    排量/(L·s-11.05×10−3
    井深/m4.31×10−5
    出口温度/℃5.14×10−4
    V裸眼内/m3−4.17×10−4
    V钻具外/m32.34×10−3
    下载: 导出CSV
  • [1] BOURGOYNE A T, MILLHEIM K K, CHENEVERT M E, et al. Applied drilling engineering: 2[M]. Richardson, TX: Society of Petroleum Engineers Richardson, 1986.
    [2] 陈浩. 钻井过程中基于ECD的工程风险评价方法研究[D]. 青岛: 中国石油大学(华东), 2018.

    CHEN Hao. Research on drilling risk assessment during drilling process based on ECD[D]. Qingdao: China University of Petroleum(East China), 2018.
    [3] 张更,李军,柳贡慧,等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698-704.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):698-704.
    [4] 马贤明, 管志川, 罗鸣, 等. 水平井钻井过程中ECD的动态预测方法研究[C]//2019第四届能源, 环境与自然资源国际会议论文集, 2019: 53-59.

    MA Xianming, GUAN Zhichuan, LUO Ming, et al. Study on the dynamic prediction method of ECD during the drilling process of horizontal wells[C]//Proceedings of the 4th International Conference on Energy, Environment and Natural Resources, 2019: 53-59.
    [5] 翟羽佳,汪志明,郭晓乐. 深水钻井水力参数计算及优选方法[J]. 中国海上油气,2013,25(1):59-63,68.

    ZHAI Yujia, WANG Zhiming, GUO Xiaole. The method for calculation and optimization of deep water drilling hydraulic parameters[J]. China Offshore Oil and Gas, 2013, 25(1):59-63,68.
    [6] 吕华东. 高温高压条件下的井低波动压力预测模型研究[D]. 大庆: 东北石油大学, 2014.

    LYU Huadong. Prediction model of surge pressure at high temperature and high pressure[D]. Daqing: Northeast Petroleum University, 2014.
    [7] VAJARGAH A K, SULLIVAN G, OORT E V. Automated fluid rheology and ECD management[C]//SPE Deepwater Drilling and Completions Conference. Galveston, Texas, USA, 2016: SPE-180331-MS.
    [8] ASHENA R, BAHREINI H, GHALAMBOR A, et al. Investigation of parameters controlling equivalent circulating density ECD in managed pressure drilling MPD[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA, 2022: SPE-208869-MS.
    [9] PETRIE S W, DOLL R. Benefits of using continuous circulation systems in ERD wells to manage ECD, Bottom hole pressure and hole cleaning[C]//SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi, UAE, 2021: SPE-202140-MS.
    [10] 王凯,和鹏飞,陈波,等. 基于Wellplan的ECD敏感性分析与精确预测技术[J]. 石油化工应用,2021,40(2):16-19,33.

    WANG Kai, HE Pengfei, CHEN Bo, et al. Sensitivity analysis and accurate prediction of ECD based on Wellplan[J]. Petrochemical Industry Application, 2021, 40(2):16-19,33.
    [11] 高永德,董洪铎,胡益涛,等. 深水高温高压井钻井液当量循环密度预测模型及应用[J]. 特种油气藏,2022,29(3):138-143.

    GAO Yongde, DONG Hongduo, HU Yitao, et al. Prediction model and application of drilling fluid equivalent circulating density in deepwater High-Temperature and High-Pressure wells[J]. Special Oil & Gas Reservoirs, 2022, 29(3):138-143.
    [12] ABDELGAWAD K Z, ELZENARY M, ELKATATNY S, et al. New approach to evaluate the equivalent circulating density (ECD) using artificial intelligence techniques[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(2):1569-1578. doi: 10.1007/s13202-018-0572-y
    [13] AHMED R, ENFIS M, MIFTAH-EL-KHEIR H, et al. The effect of drillstring rotation on equivalent circulation density: modeling and analysis of field measurements[C]//SPE Annual Technical Conference and Exhibition. Florence, Italy, 2010: SPE-135587-MS.
    [14] ROBINSON T, GOMES D, MEOR HASHIM M M H, et al. Real-Time estimation of downhole equivalent circulating density ECD using machine learning and applications[C]//IADC/SPE International Drilling Conference and Exhibition. Galveston, Texas, USA, 2022: SPE-208675-MS.
    [15] GAMAL H, ABDELAAL A, ELKATATNY S. Machine learning models for equivalent circulating density prediction from drilling data[J]. ACS Omega, 2021, 6(41):27430-27442. doi: 10.1021/acsomega.1c04363
    [16] ALSAIHATI A, ELKATATNY S, GAMAL H, et al. A statistical machine learning model to predict equivalent circulation density ECD while drilling, based on principal components analysis PCA[C]//SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi, UAE, 2021: SPE-202101-MS.
    [17] LUNDBERG S M, ERION G G, LEE S I. Consistent individualized feature attribution for tree ensembles[EB/OL]. (2019-03-07)[2023-05-05]. http://export.arxiv.org/abs/1802.03888v3.
    [18] WEISBERG S. Applied linear regression[M]. Hoboken, NJ: John Wiley & Sons, 2005.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  210
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-04-25
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回