留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层气暂堵用超支化聚合物的研制与评价

黄万龙 刘瀚宇 赵明芳 伍海宪

黄万龙,刘瀚宇,赵明芳,等. 煤层气暂堵用超支化聚合物的研制与评价[J]. 钻井液与完井液,2023,40(4):487-494 doi: 10.12358/j.issn.1001-5620.2023.04.011
引用本文: 黄万龙,刘瀚宇,赵明芳,等. 煤层气暂堵用超支化聚合物的研制与评价[J]. 钻井液与完井液,2023,40(4):487-494 doi: 10.12358/j.issn.1001-5620.2023.04.011
HUANG Wanlong, LIU Hanyu, ZHAO Mingfang, et al.Development and evaluation of a hyperbranched polymer for temporary plugging coalbed methane[J]. Drilling Fluid & Completion Fluid,2023, 40(4):487-494 doi: 10.12358/j.issn.1001-5620.2023.04.011
Citation: HUANG Wanlong, LIU Hanyu, ZHAO Mingfang, et al.Development and evaluation of a hyperbranched polymer for temporary plugging coalbed methane[J]. Drilling Fluid & Completion Fluid,2023, 40(4):487-494 doi: 10.12358/j.issn.1001-5620.2023.04.011

煤层气暂堵用超支化聚合物的研制与评价

doi: 10.12358/j.issn.1001-5620.2023.04.011
基金项目: 贵州省教育厅青年科技人才成长项目“煤层气水平井井壁失稳力学破坏机理与防塌可降解屏蔽暂堵钻井液研究”(黔教合KY字[2020]169)。
详细信息
    作者简介:

    黄万龙,1984年生,副教授,博士,2014年毕业于长江大学油气田开发工程专业,现在从事煤层气开发、岩石力学、土木工程研究方向。电话 15688061820;E-mail:huangwanlong163@163.com。

  • 中图分类号: TE254.4 TE258

Development and Evaluation of a Hyperbranched Polymer for Temporary Plugging Coalbed Methane

  • 摘要: 针对煤层气开采过程中的储层损害问题,基于暂堵储层保护理论,以甲基丙烯酸甲酯、甲基丙烯酸酐及叔羧基甜菜碱为原料,研制了一种超支化聚合物暂堵剂MTA,并评价了其综合性能。红外图谱表明,3种单体已成功共聚,其热分解温度高达252 ℃;理化性能分析表明,MTA的分子量为6×104,胺值为17.52,溶液为碱性,平均粒径在0.69~3.32 μm;MTA减缓压力传递性能远优于常用封堵剂,抑制黏土膨胀性能与聚胺抑制剂相当,可使黏土层间距由1.92 nm降低至1.58 nm;MTA在压差作用下封堵岩石微孔隙,阻止水进入地层,并通过电荷作用吸附在岩石表面,形成层状结构阻止水分子向岩石渗透。结果表明,MTA与工作液其他处理剂具有良好的配伍性,可使工作液砂盘滤失量降低41.2%;在150 ℃下,MTA工作液具有优异的持效性和抗污染性能,可耐10%NaCl、5%CaCl2或10%劣质土,其岩心渗透率恢复值可达87.3%,综合性能优异。MTA工作液现场应用,井径扩大率小于5%,具有优异的井壁稳定效果。

     

  • 图  1  MTA合成路径及结构

    图  2  MTA的红外光谱图

    图  3  MTA的热重分析结果

    图  4  1% 封堵剂水分散体系对岩心的封堵效果

    图  5  MTA在基浆中的Zeta电位分析

    图  6  不同抑制剂对膨润土的抑制膨胀性能

    图  7  湿态黏土的层间距分析

    图  8  加入MTA前后工作液的封堵性能(150 ℃)

    图  9  MTA暂堵工作液的性能

    图  10  不同超支化聚合物的高温高压滤失量(150 ℃)

    表  1  MTA的理化性能测试结果

    分子量胺值浓度/(g∙L−1pH
    6×10417.52110.03
    310.42
    510.48
    710.51
    下载: 导出CSV

    表  2  MTA的粒径分布测试结果

    MTA/%D10/μmD50/μmD90/μm
    0.50.030.692.71
    1.00.110.843.48
    1.50.271.364.16
    2.00.323.325.64
    下载: 导出CSV

    表  3  暂堵工作液的抗温性能

    T热滚/
    AV/
    mPa∙s
    PV/
    mPa∙s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    热滚前36231318/84.0
    903020109/63.47
    12034211310/64.07
    15039231611/55.010
      注:FLHTHP在 150 ℃测定。
    下载: 导出CSV

    表  4  暂堵工作液的抗污染性能(150 ℃、16 h)

    配方热滚
    条件
    AV/
    mPa∙s
    PV/
    mPa∙s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    优化工作液热滚前36231312/54.0
    热滚后3923168/35.010
    +10%NaCl热滚前48381016/52.8
    热滚后41291212/55.418
    +5%CaCl2热滚前53361712/52.2
    热滚后2717106/35.820
    +10%劣质土热滚前80691126/132.4
    热滚后56421418/93.414
      注:热滚条件均为150 ℃、16 h。
    下载: 导出CSV

    表  5  暂堵工作液的储层保护性能评价结果

    配方K0/mDKd/mDKd/K0/%
    传统工作液0.0720.02838.9
    优化工作液0.0630.05587.3
    下载: 导出CSV

    表  6  MTA超支化聚合物钻井液的性能

    井深/mρ/(g∙cm-3FV/sFLAPI/mL井径扩大率/%
    7501.02471.23.54
    7601.02491.43.63
    7701.02491.43.42
    7801.02511.24.71
    7901.02481.24.02
    8001.02491.63.81
    下载: 导出CSV
  • [1] 任美洲. 煤层气钻井过程中的储层保护技术研究[J]. 云南化工,2021,48(3):131-132. doi: 10.3969/j.issn.1004-275X.2021.03.46

    REN Meizhou. Research on reservoir protection technology in the process of coalbed methane drilling[J]. Yunnan Chemical Technology, 2021, 48(3):131-132. doi: 10.3969/j.issn.1004-275X.2021.03.46
    [2] 马腾飞. 浅析煤层气钻井过程中的储层伤害及保护技术[J]. 化工管理,2018(11):58-59. doi: 10.3969/j.issn.1008-4800.2018.11.044

    MA Tengfei. Analysis on reservoir damage and protection technology during coalbed methane drilling[J]. Chemical Management, 2018(11):58-59. doi: 10.3969/j.issn.1008-4800.2018.11.044
    [3] 肖沛瑶. 暂堵转向压裂技术用暂堵剂研究新进展[J]. 石油化工应用,2019,38(10):1-5,24. doi: 10.3969/j.issn.1673-5285.2019.10.001

    XIAO Peiyao. Research of temporary plugging agent for temporary plugging diverting fracturing[J]. Petrochemical Industry Application, 2019, 38(10):1-5,24. doi: 10.3969/j.issn.1673-5285.2019.10.001
    [4] 赵明伟,高志宾,戴彩丽,等. 油田转向压裂用暂堵剂研究进展[J]. 油田化学,2018,35(3):538-544.

    ZHAO Mingwei, GAO Zhibin, DAI Caili, et al. Advancement of temporary plugging agent for fracturing in oilfield[J]. Oilfield Chemistry, 2018, 35(3):538-544.
    [5] 王彦玲,原琳,任金恒. 转向压裂暂堵剂的研究及应用进展[J]. 科学技术与工程,2017,17(32):196-204. doi: 10.3969/j.issn.1671-1815.2017.32.031

    WANG Yanling, YUAN Lin, REN Jinheng. The progress in research and application of temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2017, 17(32):196-204. doi: 10.3969/j.issn.1671-1815.2017.32.031
    [6] 赵祥龙. 煤层气钻井过程中的储层伤害与保护探究[J]. 云南化工,2021,48(3):110-112. doi: 10.3969/j.issn.1004-275X.2021.03.38

    ZHAO Xianglong. Research on reservoir damage and protection during coalbed methane drilling[J]. Yunnan Chemical Technology, 2021, 48(3):110-112. doi: 10.3969/j.issn.1004-275X.2021.03.38
    [7] 卢国军,刘彬,王力,等. 中国煤层气储层伤害分析及钻井液储层保护研究现状[J]. 煤田地质与勘探,2016,44(2):121-126. doi: 10.3969/j.issn.1001-1986.2016.02.022

    LU Guojun, LIU Bin, WANG Li, et al. Analysis of CBM reservoir damage and status of research on reservoir protection with drilling fluids in China[J]. Coal Geology & Exploration, 2016, 44(2):121-126. doi: 10.3969/j.issn.1001-1986.2016.02.022
    [8] 魏安超,刘书杰,蒋东雷,等. 裂缝性储层环氧树脂自降解堵漏剂的制备与评价[J]. 钻井液与完井液,2023,40(2):163-168. doi: 10.12358/j.issn.1001-5620.2023.02.003

    WEI Anchao, LIU Shujie, JIANG Donglei, et al. Synthesis and evaluation of epoxy resin self-degradation plugging agent for fractured formation[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):163-168. doi: 10.12358/j.issn.1001-5620.2023.02.003
    [9] 李国锋,刘洪升,张国宝,等. ZD-10暂堵剂性能研究及其在普光气田酸压中的应用[J]. 河南化工,2012,29(5):23-26. doi: 10.3969/j.issn.1003-3467.2012.05.030

    LI Guofeng, LIU Hongsheng, ZHANG Guobao, et al. Peformance study of ZD-10 temporary plugging and lts application in Puguang gas field acid pressure process[J]. Henan Chemical Industry, 2012, 29(5):23-26. doi: 10.3969/j.issn.1003-3467.2012.05.030
    [10] LI C, QIN X, LI L, et al. Preparation and performance of an oil-soluble polyethylene wax particles temporary plugging agent[J]. Journal of Chemistry, 2018, 2018:7086059(1-7).
    [11] 许洁,许林,李习文,等. 新型储层钻井完井一体化工作液设计及性能评价[J]. 钻井液与完井液,2023,40(2):184-192. doi: 10.12358/j.issn.1001-5620.2023.02.006

    XU Jie, XU Lin, LI Xiwen, et al. Design and evaluation of an integrated drilling and completion fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):184-192. doi: 10.12358/j.issn.1001-5620.2023.02.006
    [12] 谷穗,蔡记华,常德武,等. 使用纳米碳酸钙降低低孔低渗煤层气储层伤害[J]. 地球科学(中国地质大学学报),2015,40(6):1093-1100.

    GU Hui, CAI Jihua, CHANG Dewu, et al. Reducing formation damage to low-porosity and low-permeability CBM reservoirs using calcium carbonate nanoparticles[J]. Earth Science, 2015, 40(6):1093-1100.
    [13] 李丹,刘建仪,安维杰,等. 新型抗高温水溶性暂堵剂实验研究[J]. 应用化工,2011,40(12):2071-2074,2079. doi: 10.3969/j.issn.1671-3206.2011.12.007

    LI Dan, LIU Jianyi, AN Weijie, et al. Research of high temperature water-soluble temporary plugging agent[J]. Applied Chemical Industry, 2011, 40(12):2071-2074,2079. doi: 10.3969/j.issn.1671-3206.2011.12.007
    [14] 方俊伟,张翼,李双贵,等. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术[J]. 石油钻探技术,2020,48(2):17-22. doi: 10.11911/syztjs.2020006

    FANG Junwei, ZHANG Yi, LI Shuanggui, et al. Acid-soluble temporary plugging technology for ultra-deep fractured carbonate reservoirs in block 1 of the Shunbei Area[J]. Petroleum Drilling Techniques, 2020, 48(2):17-22. doi: 10.11911/syztjs.2020006
    [15] 许可,高航,石阳,等. 储层改造用暂堵材料研究进展[J]. 应用化工,2022,51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043

    XU Ke, GAO Hang, SHI Yang, et al. Research progress of temporary plugging materials for reservoir stimulation[J]. Applied Chemical Industry, 2022, 51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043
    [16] 王林杰. 煤层气钻井过程中的储层伤害及保护技术[J]. 云南化工,2021,48(2):160-161. doi: 10.3969/j.issn.1004-275X.2021.02.56

    WANG Linjie. Research on reservoir damage and protection technology during coalbed methane driilling[J]. Yunnan Chemical Technology, 2021, 48(2):160-161. doi: 10.3969/j.issn.1004-275X.2021.02.56
    [17] 刘国卫. 煤层气钻井过程中的储层伤害及保护技术研究[J]. 西部探矿工程,2019,31(6):53-55. doi: 10.3969/j.issn.1004-5716.2019.06.020

    LIU Guowei. Study on reservoir damage and protection technology during coalbed methane drilling[J]. West-China Exploration Engineering, 2019, 31(6):53-55. doi: 10.3969/j.issn.1004-5716.2019.06.020
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  122
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-25
  • 修回日期:  2023-02-23
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回