留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双保型油田水无固相钻井液体系

李胜

李胜. 双保型油田水无固相钻井液体系[J]. 钻井液与完井液,2023,40(4):431-437 doi: 10.12358/j.issn.1001-5620.2023.04.003
引用本文: 李胜. 双保型油田水无固相钻井液体系[J]. 钻井液与完井液,2023,40(4):431-437 doi: 10.12358/j.issn.1001-5620.2023.04.003
LI Sheng.Research and application of dual-protective oilfield water drilling fluids system without solid[J]. Drilling Fluid & Completion Fluid,2023, 40(4):431-437 doi: 10.12358/j.issn.1001-5620.2023.04.003
Citation: LI Sheng.Research and application of dual-protective oilfield water drilling fluids system without solid[J]. Drilling Fluid & Completion Fluid,2023, 40(4):431-437 doi: 10.12358/j.issn.1001-5620.2023.04.003

双保型油田水无固相钻井液体系

doi: 10.12358/j.issn.1001-5620.2023.04.003
基金项目: 国家重点研发计划课题“井筒稳定性闭环响应机制与智能调控方法”(2019YFA0708303);国家自然科学基金项目“高温高压油气安全高效钻完井工程基础理论与方法”(U19B6003-05)。
详细信息
    作者简介:

    李胜,博士,毕业于中国石油大学(北京)油气井工程专业,现在主要从事钻井液技术研究工作。电话(010)56606422;E-mail:lisheng.sripe@sinopec.com。

  • 中图分类号: TE254.3

Research and Application of Dual-protective Oilfield Water Drilling Fluids System Without Solid

  • 摘要: 针对塔河油田奥陶系碳酸盐岩储层开发过程中,常规聚磺钻井液体系含不酸溶固相漏失后污染储层,磺化类处理剂不符合绿色开发理念等技术难题,因地制宜地引入油田水配制无固相钻井液,避免了固相对储层的损害,并优选出了抗高温抗钙增黏剂、流型调节剂、抗高温抗钙聚合物降滤失剂等关键处理剂,开发出了双保型油田水无固相钻井液体系。室内评价数据显示,该钻井液抗温可达150 ℃,动塑比高达0.68~0.76 Pa/mPa·s,生物毒性指标EC50高达28 600 mg/L,生物降解指标BOD5/CODCr高达21.35%,为无毒易降解钻井液体系,动态渗透率恢复值高达91.8%,具有良好的储层保护性能。研发的双保型油田水无固相钻井液体系成功在10多口深侧钻井应用,应用效果显著。

     

  • 表  1  纯碱加量对油田水钙离子含量的影响

    纯碱/
    %
    钙离子含量/
    mg·L−1
    纯碱/
    %
    钙离子含量/
    mg·L−1
    纯碱/
    %
    钙离子含量/
    mg·L−1
    013 280269104860
    110 16033885
    下载: 导出CSV

    表  2  预处理油田水钻井液用增黏剂的优选

    增黏
    实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    HV-CMC 热滚前 35.0 29.0 6.0
    热滚后 5.0 4.0 1.0
    PAC-HV 热滚前 46.0 37.0 9.0
    热滚后 4.5 4.0 0.5
    80A51 热滚前 53.0 48.0 5.0
    热滚后 6.0 5.0 1.0
    SMVIS 热滚前 58.0 52.0 6.0
    热滚后 28.0 24.0 4.0
      注:测试温度为50 ℃;增黏剂的加量均为1%;热滚条件为140 ℃、16 h。
    下载: 导出CSV

    表  3  预处理油田水钻井液用降滤失剂的优选

    降滤
    失剂
    实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    0.5%PAC-LV 热滚前 21 19.0 2.0
    热滚后 16 15.0 1.0 19.4
    0.5%LV-CMC 热滚前 16 14.0 2.0
    热滚后 13 12.0 1.0 15.6
    0.5%SMPFL-C 热滚前 19 16.5 2.5
    热滚后 16 15.0 1.0 12.4
    2%改性淀粉SMART 热滚前 15 13.0 2.0
    热滚后 13 11.5 1.5 9.2
    2%羧甲基淀粉 热滚前 17 15.0 2.0
    热滚后 12 11.0 1.0 16.4
    2%预胶化淀粉 热滚前 18 16.0 2.0
    热滚后 10 9.0 1.0 21.2
      注:流变参数测试温度为50 ℃;热滚条件为140 ℃、16 h。
    下载: 导出CSV

    表  4  预处理油田水钻井液用流型调节剂的优选

    配方测试条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    FLAPI/
    mL
    0.3%黄原胶 热滚前 35.0 21.0 14.0 0.67
    热滚后 20.5 16.0 4.5 0.28 5.0
    0.3%胍尔胶 热滚前 35.0 22.0 13.0 0.59
    热滚后 24.0 19.0 5.0 0.26 4.6
    0.3%SMRM-2 热滚前 49.0 25.0 24.0 0.96
    热滚后 29.0 19.0 10.0 0.53 4.2
      注:流变参数测试温度为50 ℃;热滚条件为140 ℃、16 h。
    下载: 导出CSV

    表  5  不同密度油田水无固相钻井液的性能

    ρ/
    g·cm−3
    测试
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    Kf
    1.08热滚前3923160.705.0/5.5
    热滚后3219130.684.0/4.54.614.20.0437
    1.12热滚前4124170.715.5/6.0
    热滚后2917120.714.5/5.04.813.60.0524
    1.16热滚前4126150.584.5/5.5
    热滚后3017130.764.5/5.03.612.80.0524
    1.30热滚前48.03018.00.605.0/6.5
    热滚后33.52112.50.605.0/6.02.210.2
    1.50热滚前57.03522.00.636.0/9.0
    热滚后45.03015.00.506.0/8.51.48.4
      注:流变参数测试温度为50 ℃;高温高压滤失量测试温度为140 ℃。
    下载: 导出CSV

    表  6  油田水无固相钻井液在不同热滚温度下的性能

    T热滚/℃ρ/(g·cm−3AV/mPa·sPV/mPa·sYP/PaYP/PV/(Pa/mPa·s)Gel/Pa/PaFLAPI/mLFLHTHP/mL
    1401.1640.521.019.50.934.5/5.03.612.8
    1501.1637.521.016.50.793.0/4.06.018.6
    1601.1629.017.012.00.711.5/3.010.435.2
      注:流变参数测试温度为50 ℃;高温高压滤失量测试温度为140 ℃。
    下载: 导出CSV

    表  7  油田水无固相钻井液环保性能的评价结果

    钻井液EC50/(mg/L)BOD5/CODCr/%
    聚磺钻井液体系 752 8.56
    油田水无固相钻井液体系 28600 21.35
    下载: 导出CSV

    表  8  岩心流动实验仪动态渗透率恢复实验结果

    钻井液Kg/
    10−3µm2
    Kw1/
    10−3µm2
    Kw2/
    10−3µm2
    R/
    %
    聚磺钻井液体系 4.322 2.356 2.031 86.7
    油田水无固相钻井液 6.102 2.103 1.912 91.8
    下载: 导出CSV

    表  9  TK-A井双保型油田水无固相钻井液的性能

    井深/mρ/(g·cm−3FV/sPV/mPa·sYP/PaYP/PV/(Pa/mPa·s)Gel/(Pa/Pa)FLAPI/mLFLHTHP/mLVs/%Kf
    6069.01.10431590.602.0/3.03.613.240.05
    6158.41.104416100.633.0/4.04.213.840.05
    6179.71.104417110.653.5/4.53.813.040.05
    6244.81.164418120.673.0/4.04.014.060.05
    6335.71.164317110.653.5/4.54.214.260.05
    6404.41.164519110.583.0/4.54.414.060.05
    6415.71.17401790.532.5/3.54.614.660.05
    6447.61.17391680.502.0/4.04.214.260.05
    下载: 导出CSV
  • [1] 康毅力,闫丰明,游利军,等. 塔河油田缝洞型储层漏失特诊及控制技术实践[J]. 钻井液与完井液,2010,27(1):41-43,46.

    KANG Yili, YAN Fengming, YOU Lijun, et al. Loss and control in vugular reservoir formations in block Tahe[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):41-43,46.
    [2] 王伟志,刘庆来,郭新健,等. 塔河油田防漏堵漏技术综述[J]. 探矿工程(岩土钻掘工程),2019,46(3):42-46,50.

    WANG Weizhi, LIU Qinglai, GUO Xinjian, et al. Review of lost circulation prevention and plugging techniques in Tahe oilfield[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(3):42-46,50.
    [3] 鲁新便,张宁,刘雅雯. 塔河油田奥陶系稠油油藏地质特征及开发技术对策探讨[J]. 新疆地质,2003,21(3):329-334.

    LU Xinbian, ZHANG Ning, LIU Yawen. Geological characteristics and discussion about technical develeopment strategies for ordovician heavy-oil reservoir in Tahe oilfield[J]. Xinjiang Geology, 2003, 21(3):329-334.
    [4] 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40. doi: 10.12358/j.issn.1001-5620.2023.01.004

    SHU Yong, JIANG Luming, YANG Jun, et al. Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):35-40. doi: 10.12358/j.issn.1001-5620.2023.01.004
    [5] 马磊,袁学强,张万栋,等. 乌石17-2油田强封堵合成基钻井液体系[J]. 钻井液与完井液,2022,39(5):558-564.

    MA Lei, YUAN Xueqiang, ZHANG Wandong, et al. A synthetic based drilling fluid with strong plugging capacity for block Wushi17-2[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):558-564.
    [6] 刘程,李锐,张光华,等. 新型无固相钻井液体系研究新进展[J]. 天然气工业,2009,29(11):64-66.

    LIU Cheng, LI Rui, ZHANG Guanghua. New progress in the research into a new type of solid-free drilling fluid system[J]. Natural Gas Industry, 2009, 29(11):64-66.
    [7] 由福昌,文华,吴娇,等. 高密度无土相油基钻井液[J]. 钻井液与完井液,2022,39(2):146-150.

    YOU Fuchang, WEN Hua, WU Jiao, et al. High density clay-free oil based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):146-150.
    [8] 邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价用[J]. 钻井液与完井液,2021,38(6):663-670.

    QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Study and performance evaluation of ultra-high temperature high density oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670.
    [9] 于志纲,张军,彭商平,等. 可降解甲酸盐钻井液的研究与应用[J]. 石油钻采工艺,2010,32(6):53-57.

    YU Zhigang, ZHANG Jun, PENG Shangping, et al. Research and application of decomposable formate base drilling fluid[J]. Oil Drilling & Production Technology, 2010, 32(6):53-57.
    [10] 张冬玲,薛玉志,马云谦,等. 无固相抗高温钻井完井液在渤深6 区块的应用[J]. 钻井液与完井液,2008,25(1):12-14.

    ZHANG Donglin, XUE Yuzhi, MA Yunqian, et al. The application of solids-free high temperature drilling fluid in block Boshen-6[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):12-14.
    [11] 张荣,李自立,王洪伟. 无固相弱凝胶钻开液延时破胶技术研究[J]. 钻井液与完井液,2011,28(2):42-44. doi: 10.3969/j.issn.1001-5620.2011.02.012

    ZHANG Rong, LI Zili, WANG Hongwei. Research on delayed gelout technology of weak-gelled solid-free drill-in Fluid[J]. Drilling Fluid & Completion Fluid, 2011, 28(2):42-44. doi: 10.3969/j.issn.1001-5620.2011.02.012
    [12] 褚奇, 张凤英, 孔勇, 等.一种疏水单体及基于该单体的无固相钻井液用增粘剂:CN201510420099.5[P]. 2017-01-25

    CHU Qi, ZHANG Fengying, KONG Yong, et al. The invention relates to a hydrophobic monomer and a viscosifier for solid-free drilling fluid based on the monomer: CN201510420099.5[P]. 2017-01-25
    [13] 卢祥国,周彦霞,孙哲,等. 聚合物分子聚集体形态及其油藏适应性[J]. 大庆石油地质与开发,2015,34(6):88-94. doi: 10.3969/J.ISSN.1000-3754.2015.06.015

    LU Xiangguo, ZHOU Yanxia, SUN Zhe, et al. Configurations of the polymer molecular aggregateand their iul reservoir application[J]. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(6):88-94. doi: 10.3969/J.ISSN.1000-3754.2015.06.015
    [14] 何剑,杨小华,王琳,等. 抗高温抗钙水溶性聚合物降滤失剂研究进展[J]. 中外能源,2016,21(7):32-35.

    HE Jian, YANG Xiaohua, WANG Lin, et al. Research progress of water-soluble polymeric filtrate reducer with high-temperature resistance and calcium tolerance[J]. Sino-global Energy, 2016, 21(7):32-35.
    [15] 杨双春,宋洪瑞,郭 奇,等. 钻井液用流型调节剂的研究进展[J]. 精细化工,2020,37(9):1744-1752. doi: 10.13550/j.jxhg.20200246

    YANG Shuangchun, SONG Hongrui, GUO Qi, et al. Research progress of rheology modifier for drilling fluids[J]. Fine Chemicals, 2020, 37(9):1744-1752. doi: 10.13550/j.jxhg.20200246
    [16] 黄宁,吕开河,孙金声,等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405.

    HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405.
    [17] 张桓,罗春芝,张世录,等. 抗温抗污染油基钻井液乳化剂的研制及在阳101区块的应用[J]. 钻采工艺,2022,45(6):146-151.

    ZHANG Huan, LUO Chunzhi, ZHANG Shilu, et al. Development of anti-temperature and anti-pollution emulsifier for oil-based drilling fluid and its application in Yang101 Block[J]. Drilling & Production Technology, 2022, 45(6):146-151.
    [18] 王伟吉,高伟,范胜,等. 新型非磺化环保低摩阻钻井液[J]. 钻井液与完井液,2022,39(4):459-465.

    WANG Weiji, GAO Wei, FAN Sheng, et al. The development and application of a new environmentally friendly low friction non-sulfonate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):459-465.
  • 加载中
表(9)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  200
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-04-23
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回