留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳封存区块内弃置井泄露机制及控制方法模拟

王典 李军 刘鹏林 刘献博 连威 路宗羽

王典,李军,刘鹏林,等. 碳封存区块内弃置井泄露机制及控制方法模拟[J]. 钻井液与完井液,2023,40(3):384-390 doi: 10.12358/j.issn.1001-5620.2023.03.015
引用本文: 王典,李军,刘鹏林,等. 碳封存区块内弃置井泄露机制及控制方法模拟[J]. 钻井液与完井液,2023,40(3):384-390 doi: 10.12358/j.issn.1001-5620.2023.03.015
WANG Dian, LI Jun, LIU Penglin, et al.Simulation study of sealing integrity in abandoned wells within co2 sequestration block[J]. Drilling Fluid & Completion Fluid,2023, 40(3):384-390 doi: 10.12358/j.issn.1001-5620.2023.03.015
Citation: WANG Dian, LI Jun, LIU Penglin, et al.Simulation study of sealing integrity in abandoned wells within co2 sequestration block[J]. Drilling Fluid & Completion Fluid,2023, 40(3):384-390 doi: 10.12358/j.issn.1001-5620.2023.03.015

碳封存区块内弃置井泄露机制及控制方法模拟

doi: 10.12358/j.issn.1001-5620.2023.03.015
基金项目: 国家自然科学青年基金项目“页岩气井多级压裂诱发断层滑移量化计算模型与套管变形控制方法研究”(52204018);国家自然科学基金企业创新发展联合基金项目“海相深层高温高压钻完井工程基础理论及控制方法”(U19B6003)
详细信息
    作者简介:

    王典,在读博士研究生,1995年生,现在从事井筒完整性方面的研究。电话 15713701616;E-mail:wangd.1995@qq.com

  • 中图分类号: TE254

Simulation Study of Sealing Integrity in Abandoned Wells Within CO2 Sequestration Block

  • 摘要: 弃置井筒作为CO2地质封存中的主要泄露途径,其密封完整性直接关乎封存效果。为此,针对弃置井筒泄露问题,基于耦合孔隙压力的Cohesive单元法,建立了三维水泥塞-地层有限元模型,模拟了CO2沿弃置井筒运移过程,分析了水泥浆体系、胶结质量对泄露风险的影响。模拟结果表明:CO2聚积会诱发水泥塞-地层界面微环隙,形成泄露通道,且微环隙倾向于轴向发育;选择高模量、高泊松比、微膨胀性水泥密封井筒时,井筒泄露风险低;微环隙对胶结质量极为敏感,密封井筒时应重点控制胶结质量。研究结果对指导碳封存区块内井筒弃置具有重要意义。

     

  • 图  1  Cohesive单元本构关系及损伤特征

    图  2  微环隙内流体运移示意图

    图  3  案例井及有限元模型结构

    图  4  微环隙实验结果及有限元模拟结果

    图  5  微环隙内流体压力变化

    图  6  水泥塞-地层界面微环隙宽度云图

    图  7  不同水泥塞弹性模量对微环隙发育的影响

    图  8  不同水泥塞泊松比对微环隙发育的影响

    图  9  不同水泥塞膨胀率对微环隙发育的影响

    图  10  界面胶结质量示意图(红色单元表示集合A)

    图  11  界面胶结质量对微环隙发育的影响

    表  1  材料属性

    材料属性弹性模量/GPa泊松比渗透率/mD孔隙度
    水泥塞100.100.050.30
    地层300.245.000.15
    下载: 导出CSV

    表  2  水泥塞/地层胶结属性

    界面属性法向强
    度/MPa
    切向强
    度/MPa
    界面刚
    度/MPa
    断裂能/
    MPa·m1/2
    滤失系数/
    m·(Pa·s)−1
    水泥/地层界面0.383.458.5×1031.85.3×10−14
    下载: 导出CSV
  • [1] 张森琦,刁玉杰,程旭学,等. 二氧化碳地质储存逃逸通道及环境监测研究[J]. 冰川冻土,2010,32(6):1251-1261.

    ZHANG Senqi, DIAO Yujie, CHENG Xuxue, et al. CO2 geological storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology, 2010, 32(6):1251-1261.
    [2] 谢健,魏宁,吴礼舟,等. CO2地质封存泄漏研究进展[J]. 岩土力学,2017,38(S1):181-188.

    XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1):181-188.
    [3] 任韶然,任博,李永钊,等. CO2地质埋存监测技术及其应用分析[J]. 中国石油大学学报(自然科学版),2012,36(1):106-111.

    REN Shaoran, REN Bo, LI Yongzhao, et al. Monitoring techniques of CO2 geological storage and its application analysis[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(1):106-111.
    [4] KANG M, CHRISTIAN S, CELIA M A, et al. Identification and characterization of high methane-emitting abandoned oil and gas wells[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13636-13641.
    [5] 柏明星,KURT M. REINICKE, 艾池, 等. 二氧化碳地质存储过程中沿井筒渗漏定性分析[J]. 地质论评,2013,59(1):107-112.

    BAI Mingxing, KURT M R, AI Chi, et al. A qualitative analysis of CO2 leakage along abandoned well during CO2 sequestration[J]. Geological Review, 2013, 59(1):107-112.
    [6] BOUKHELIFA L, MORONI N, JAMES S G, et al. Evaluation of cement systems for oil and gas-well zonal isolation in a full-scale annular geometry[J]. SPE Drilling & Completion, 2005, 20(1):44-53.
    [7] BOIS A P, GARNIER A, RODOT F, et al. How to prevent loss of zonal isolation through a comprehensive analysis of microannulus formation[J]. SPE Drilling & Completion, 2011, -26(1):13-31.
    [8] THEROND E, BOIS A P, WHALEY K, et al. Large-scale testing and modeling for cement zonal isolation in water-injection wells[J]. SPE Drilling & Completion, 2017, 32(4):290-300.
    [9] 李军, 杨宏伟, 李军伟, 等. 海上油气井井筒弃置与管理[M]. 北京: 石油工业出版社. 2020.

    LI Jun, YANG Hongwei, LI Junwei, et al. Offshore oil and gas wellbore abandonment and management[M]. Petroleum Industry Press. 2020.
    [10] CORINA A N, OPEDAL N, VRALSTAD T, et al. The effect of casing-pipe roughness on cement-plug integrity[J]. SPE Drilling & Completion, 2020, 35(2):237-251.
    [11] 初纬,沈吉云,杨云飞,等. 连续变化内压下套管-水泥环-围岩组合体微环隙计算[J]. 石油勘探与开发,2015,42(03):414-421. doi: 10.1016/S1876-3804(15)30033-1

    CHU Wei, SHEN Jiyun, YANG Yunfei, et al. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development, 2015, 42(03):414-421. doi: 10.1016/S1876-3804(15)30033-1
    [12] GRAY K E, PODNOS E, BECKER E. Finite-element studies of near-wellbore region during cementing operations: Part I[J]. SPE Drilling & Completion, 2009, 24(1):127-136.
    [13] 蒋记伟,李军,柳贡慧,等. 基于Cohesive单元法的弃置井水泥塞-套管界面胶结失效数值模拟[J]. 钻井液与完井液,2020,37(3):351-357. doi: 10.3969/j.issn.1001-5620.2020.03.014

    JIANG Jiwei, LI Jun, LIU Gonghui, et al. Numerical simulation of failed bonding between cement plug and casing string in abandoned wells based on cohesive element method[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):351-357. doi: 10.3969/j.issn.1001-5620.2020.03.014
    [14] LIAN W, LI J, LIU G, et al. Numerical simulation of cement-to-formation interface debonding during hydraulic fracturing of shale gas wells[J]. Journal of Adhesion Science and Technology, 2019, 34(9):1-19.
    [15] 李军,翟文宝,陈朝伟,等. 基于零厚度内聚力单元的水力裂缝随机扩展方法研究[J]. 岩土力学,2021,42(1):265-279.

    LI Jun, ZHAI Wenbao, CHEN Chaowei, et al. Research on random propagation method of hydraulic fracture based on zero-thickness cohesive element[J]. Rock and Soil Mechanics, 2021, 42(1):265-279.
    [16] 龚迪光,曲占庆,李建雄,等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学,2016,37(5):1512-1520.

    GONG Diguang, QU Zhanqing, LI Jianxiong, et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 2016, 37(5):1512-1520.
    [17] FENG Y, LI X, GRAY K E. Development of a 3D numerical model for quantifying fluid-driven interface debonding of an injector well[J]. International Journal of Greenhouse Gas Control, 2017, 62:76-90. doi: 10.1016/j.ijggc.2017.04.008
    [18] LIU X, NAIR S D, COWAN M, et al. A novel method to evaluate cement-shale bond strength[C]. SPE International Symposium on Oilfield Chemistry, 2015.
    [19] OPEDAL N, TODOROVIC J, TORSæTER M, et al. Experimental study on the cement-formation bonding[C]. SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2014.
    [20] LECAMPION B, BUNGER A, KEAR J, et al. Interface debonding driven by fluid injection in a cased and cemented wellbore: Modeling and experiments[J]. International Journal Greenhouse Gas Control, 2013, 18:208-223. doi: 10.1016/j.ijggc.2013.07.012
    [21] RAAEN, A M, BRUDY M. Pump-in/flowback tests reduce the estimate of horizontal in-situ stress significantly[C]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 2001.
    [22] VAN DAM D B, PAPANASTASIOU P, DE PATER C J. Impact of rock plasticity on hydraulic fracture propagation and closure[J]. SPE Production & Facilities, 2002, 17(3):149-159.
    [23] OPEDAL N, TODOROVIC J, TORSæTER M, et al. Experimental study on the cement-formation bonding[C]. SPE International Symposium and Exhibition on Formation Damage Control, 2014.
    [24] SKORPA R, WERNER B, VRåLSTAD T. Effect of mud on cement sheath integrity[C]. SPE Norway One Day Seminar, 2019.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  220
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 修回日期:  2023-02-15
  • 录用日期:  2023-02-15
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回