Study on a Foam Lightweight Cement Slurry and the Distribution of Its Micro Pores
-
摘要: 泡沫减重水泥浆体系对保障低压易漏地层井下生产安全至关重要。通过亲水链十四烷二酸甲酯、疏水链N,N-二甲基-1,3-二氨基丙烷及刚性链接单体二溴代联苯制备了耐高温高效发泡剂FPJ-S,并通过增黏型稳泡剂和协同型稳泡剂的优选复配得到了耐高温稳泡剂WPJ-S,基于FPJ-S和WPJ-S建立了泡沫减重水泥浆体系,并对其发泡能力及泡沫减重水泥石中的孔隙分布进行了分析。研究结果表明,相较于传统发泡剂,FPJ-S的发泡倍数提高了40%,1 h沉降距降低了58.8%;WPJ-S的稳泡能力和耐温能力均得以提升;建立的泡沫减重水泥浆体系在0.90~1.60 g/cm3下密度可调,浆体沉降稳定性较好,并且不同密度泡沫减重水泥石的24 h抗压强度均大于3 MPa;基于压汞法及工业CT(XCT)技术表征可知,该泡沫减重水泥石的孔隙分布均匀,形态较为规则完整,且未发现大量联通孔。Abstract: Foam lightweight cement slurry is very important to the safety of downhole operation in low-pressure easy-to-leak formation drilling. A high temperature high efficiency foaming agent FPJ-S has been developed to formulate lightweight cement slurries. FPJ-S is prepared from the hydrophilic tetradecanedioic acid methyl ester, the hydrophobic N,N-dimethyl-1,3-diamino propane and a rigid linking monomer 2,2’-dibromobiphenyl. A high temperature foam stabilizer, WPJ-S, was developed with the FPJ-S, a viscosifying foam stabilizer and a synergistic foam stabilizer. A foam lightweight cement slurry was formulated with WPJ-S and experiments were conducted to study the foaming capacity of the FPJ-S and the WPJ-S, as well as the distribution of pores in the set foam cement. The study results show that compared with conventional foaming agents, the foaming capacity of the FPJ-S is increased by 40%, the 1-hour settling distance is reduced by 58.8%. The foam stabilizing capacity and temperature tolerance of the WPJ-S is superior to the conventional foam stabilizers. The density of the foam lightweight cement slurry formulated can be adjusted between 0.90 g/cm3 and 1.6 g/cm3. The cement slurry has good settlement stabilization, and the 24-hour compressive strengths of the cement slurries of different densities are all greater than 3 MPa. Technical characterization based on mercury intrusion method and industry CT (XCT) shows that the foam lightweight cement slurry has pores that are uniformly distributed inside the set cement, and the set cement has regular morphology, and no large number of connecting holes are found in the set cement.
-
Key words:
- Foaming agent /
- Foam stabilizer /
- Foam cement slurry /
- Distribution of pores
-
表 1 油井水泥化学组成
化学成分 含量/% 化学成分 含量/% 化学成分 含量/% CaO 62.070 Al2O3 3.608 K2O 0.675 SiO2 20.494 MgO 1.863 SO3 3.471 Fe2O3 4.071 Na2O 0.250 TiO2 0.262 表 2 发泡剂(FPJ-S)性能参数(25 ℃)
发泡剂 临界胶束浓度/
mmol·L−1表面张力/
mN·m−1发泡
倍数1 h沉降距/
mmFPJ-S 0.82 27.5 35 14 十二烷基三甲基溴化铵 15.72 38.6 25 34 表 3 HPMC与PEG对起泡能力与稳定性的影响
稳泡剂
类型分子量 不同时间的泡沫高度/mm 泡沫
保留率/%0 s 30 s 3 min 5 min 空白 0 552 500 423 380 68.8 HPMC 400 575 563 540 503 87.5 4000 555 547 520 508 91.5 15 000 525 515 500 475 90.5 PEG 2000 548 530 510 480 87.6 4000 535 525 500 480 89.7 6000 510 500 491 479 93.9 表 4 CaSt与SDS对起泡能力与稳定性的影响
稳泡剂
类型加量/
%不同时间的泡沫高度/mm 泡沫
保留率/%0 s 30 s 3min 5 min 空白 0 552 500 423 380 68.8 CaSt 0.1 553 535 505 488 88.2 0.3 560 536 510 491 87.7 0.5 562 547 527 503 89.5 SDS 0.1 547 530 508 491 89.8 0.3 555 532 512 502 90.5 0.5 559 535 517 506 90.5 表 5 分散剂加量对水泥浆浆体性能的影响
SXY/
%流动度/
cm塑性黏度/
mPa·s水泥浆密度/
g·cm−3稳定性 0.2 24 55 1.18 较好 0.3 26 50 1.13 较好 0.4 28 46 1.06 较好 0.5 31 41 1.05 有气泡上浮 表 6 泡沫减重水泥浆体系的各组分配比
配方 降失水剂
G33S/%分散剂
USZ/%发泡剂
FPJ-S/%稳泡剂
WPJ-S/%水灰比 1# 0.65 0.30 0.80 0.07 0.63 2# 0.70 0.30 0.70 0.06 0.60 3# 0.70 0.30 0.60 0.06 0.60 4# 1.00 0.30 0.50 0.06 0.60 5# 1.10 0.30 0.50 0.04 0.55 6# 1.10 0.40 0.40 0.04 0.55 7# 1.20 0.40 0.30 0.02 0.50 8# 1.20 0.40 0.25 0.02 0.50 注:缓凝剂ZH-2加量依据稠化时间可调节。 表 7 泡沫减重水泥浆体系的基本性能
配方 ρ/
g·cm−32 h沉降
稳定性p24 h/MPa
(80 ℃)含气率/
%1# 0.9 良好 3.32 48 2# 1.0 良好 4.60 43 3# 1.1 良好 5.58 37 4# 1.2 良好 7.53 31 5# 1.3 良好 8.34 27 6# 1.4 良好 9.88 22 7# 1.5 良好 11.27 18 8# 1.6 良好 12.30 13 -
[1] 刘慧婷,付家文,丛谧,等. 高强度低密度水泥石的微观结构和力学性能[J]. 硅酸盐通报,2020,39(11):3432-3437.LIU Huiting, FU Jiawen, CONG Mi, et al. Microstructure and mechanical properties of high-strength low-density cement paste[J]. Silicate Bulletin, 2020, 39(11):3432-3437. [2] 杨海波,曹成章,冯德杰,等. 新型低密度水泥减轻材料SXJ-1的研制及应用[J]. 石油钻探技术,2017,45(4):59-64.YANG Haibo, CAO Chengzhang, FENG Dejie, et al. Development and application of new low-density cement reducing material SXJ-1[J]. Petroleum Drilling Techniques, 2017, 45(4):59-64. [3] 顾军,向阳,何湘清,等. 泡沫超低密度油井水泥的试验研究[J]. 水泥,2002(6):19-20.GU Jun, XIANG Yang, HE Xiangqing, et al. Experimental study on foam ultra-low density oil well cement[J]. Cement, 2002(6):19-20. [4] 吴天乾,宋文宇,谭凌方,等. 超低密度水泥固井质量评价方法[J]. 石油钻探技术,2022,50(1):65-70.WU Tianqian, SONG Wenyu, TAN Lingfang, et al. Evaluation method for cementing quality of ultra-low-density cement[J]. Petroleum Drilling Techniques, 2022, 50(1):65-70. [5] 陈芳,毛素梅. 固井工艺技术中对泡沫水泥的应用[J]. 石化技术,2016,23(3):186.CHEN Fang, MAO Sumei. Application of foam cement in cementing technology[J]. Petrochemical Technology, 2016, 23(3):186. [6] 杨昆鹏,项忠华,黄鸣宇,等. 低成本超低密度水泥浆体系研究与应用[J]. 钻井液与完井液,2018,35(4):92-96.YANG Kunpeng,XIANG Zhonghua,HUANG Mingyu,et al. Study and application of a low cost ultra-low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):92-96. [7] 卓兴家,秦宇. 高温高压泡沫水泥环完整性研究[J]. 当代化工,2016,45(6):1188-1190.ZHUO Xingjia, QIN Yu. Study on integrity of high-temperature and high-pressure foam cement sheath[J]. Contemporary Chemical Industry, 2016, 45(6):1188-1190. [8] 谭慧静,周丹,陈德南,等. 用于高温地热井泡沫水泥泡沫剂性能研究[J]. 地质与勘探,2015,51(6):1181-1186.TAN Huijing, ZHOU Dan, CHEN Denan, et al. Study on the performance of foam cement foam agent used in high-temperature geothermal wells[J]. Geology and Exploration, 2015, 51(6):1181-1186. [9] YANG Y, ZHOU Q, DENG Y, et al. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites[J]. Cement and Concrete Composites, 2022, 128:104422. [10] DU Z, ZUO W, WANG P, et al. Ultralight, super thermal insulation, and fire-resistant cellular cement fabricated with Janus nanoparticle stabilized ultra-stable aqueous foam[J]. Cement and Concrete Research, 2022(162):106994. [11] HOU L, LI J, LU Z, et al. Influence of foaming agent on cement and foam concrete[J]. Construction and Building Materials, 2021, 280:122399. [12] BAI Y, XIE B, LI H, et al. Mechanical properties and electromagnetic absorption characteristics of foam Cement-based absorbing materials[J]. Construction and Building Materials, 2022, 330:127221. [13] JC/T 2199—2013, 泡沫混凝土用泡沫剂[S]. 北京, 2013.JC/T 2199—2013, Foam agent for foam concrete [S]. Beijing, 2013. [14] GB/T 7462—1994, 表面活性剂发泡力的测定-改进Ross-Miles法[S]. 北京, 1994.GB/T 7462—1994, Determination of foaming power of surfactants - Modified Ross-Miles method [S]. Beijing, 1994. [15] GB/T 39533—2020, 常压下泡沫水泥浆的制备及实验方法[S]. 北京, 2020.GB/T 39533—2020, Preparation and experimental method of foam cement slurry at atmospheric pressure [S]. Beijing, 2020. [16] 王险峰,孙培培,邢锋,等. 微胶囊自修复水泥基材料的微观结构研究[J]. 防灾减灾工程学报,2016,36(1):126-131.WANG Xianfeng, SUN Peipei, XING Feng, et al. Study on the microstructure of microencapsulated self-repairing cement-based materials[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1):126-131. [17] 郑冠一,郭小阳,李早元,等. 基于分形理论的高温固井水泥浆体系设计及评价[J]. 硅酸盐通报,2020,39(6):1742-1750.ZHENG Guanyi, GUO Xiaoyang, LI Zaoyuan, et al. Design and evaluation of high-temperature cementing slurry system based on fractal theory[J]. Silicate Bulletin, 2020, 39(6):1742-1750. [18] 高嵩,李秋义,李楠,等. 基于最紧密堆积理论超密实再生砂浆制备研究[J]. 建筑结构学报,2021,42(S1):466-472.GAO Song, LI Qiuyi, LI Nan, et al. Study on preparation of ultra-dense recycled mortar based on the tightest packing theory[J]. Journal of Building Structures, 2021, 42(S1):466-472. [19] 韩家伟,严辰成,胡五龙,等. 盐冻条件下不同水灰比硬化水泥砂浆的孔隙演化及表征[J]. 硅酸盐学报,2020,48(11):1842-1851.HAN Jiawei, YAN Chencheng, HU Wulong, et al. Pore evolution and characterization of hardened cement mortar with different water cement ratios under salt freezing conditions[J]. Journal of Silicate, 2020, 48(11):1842-1851. [20] 徐义洪,范颖芳. 氧化石墨烯水泥净浆的力学性能与微观结构的分形特征[J]. 混凝土,2020(8):130-134.XU Yihong, FAN Yingfang. Fractal characteristics of mechanical properties and microstructure of graphene oxide cement paste[J]. Concrete, 2020(8):130-134. [21] 王鼎, 万向臣, 杨晨. 低摩阻耐压防漏低密度水泥浆固井技术 [J]. 钻井液与完井液, 2022, 39(5): 608-614.WANG Ding, WAN Xiangchen, YANG Chen.Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(5): 608-614. [22] 韦庭丛,程小伟,王升正,等. 漂珠低密度水泥石的孔体积分形维数及其与孔结构和力学性能的关系[J]. 材料导报,2016,30(S2):415-419.WEI Tingcong, CHENG Xiaowei, WANG Shengzheng, et al. The pore integral shape dimension of floating bead low density cement paste and its relationship with pore structure and mechanical properties[J]. Material Guide, 2016, 30(S2):415-419. -