留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干热岩工况下水泥高温劣化性能的调控措施

党冬红 刘宁泽 王丹 梅开元 程小伟 孙兴嘉

党冬红,刘宁泽,王丹,等. 干热岩工况下水泥高温劣化性能的调控措施[J]. 钻井液与完井液,2023,40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013
引用本文: 党冬红,刘宁泽,王丹,等. 干热岩工况下水泥高温劣化性能的调控措施[J]. 钻井液与完井液,2023,40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013
DANG Donghong, LIU Ningze, WANG Dan, et al.Control measures of cement high-temperature deterioration performance under dry-hot rock conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013
Citation: DANG Donghong, LIU Ningze, WANG Dan, et al.Control measures of cement high-temperature deterioration performance under dry-hot rock conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(3):368-375 doi: 10.12358/j.issn.1001-5620.2023.03.013

干热岩工况下水泥高温劣化性能的调控措施

doi: 10.12358/j.issn.1001-5620.2023.03.013
基金项目: 四川省区域创新合作项目“页岩气水平井固井用原位增韧水泥研究与应用” ( 2021YFQ0045)
详细信息
    作者简介:

    党冬红,高级工程师,1980年生,毕业于西安石油大学自动化专业。电话 (0317)2781166;E-mail:dangdonghong@cnpc.com.cn

    通讯作者:

    程小伟,教授,博士生导师。E-mail:chengxw@swpu.edu.cn

  • 中图分类号: TE256

Control Measures of Cement High-temperature Deterioration Performance under Dry-hot Rock Conditions

  • 摘要: 干热岩地热井固井中,井底温度常常高达200 ℃以上。针对干热岩工况下井底高温导致的水泥石强度衰退的问题,从水泥的化学组分入手,通过调控C3S和C2S的比例,并在硅粉的协同作用下复配具有更低钙硅比的低热硅酸盐水泥来改善这一问题。首先对复相C3S-C2S矿物体系的比例调控可知,当C3S∶C2S=1.0时其力学性能最好,结合XRD、TGA、SEM测试可知,钙硅比的降低对有利相硬硅钙石的生成有积极作用。引入具有更低钙硅比的低热水泥增强G级水泥,结果表明:“30% G级水泥+70%低热水泥”复配水泥体系(C3S与C2S的比例为1.07)在40%硅粉的作用下,其抗压强度达27.34 MPa。在实际生产中适当调整水泥中的矿物组分,使C3S与C2S的比例为1.0左右,可从水泥本身大幅度提高水泥石耐高温性能。

     

  • 图  1  不同温度下养护14 d单矿C3S和C2S试样的维氏硬度

    图  2  230 ℃下养护14 d后复相C3S-C2S试样的维氏硬度

    图  3  230 ℃下养护14 d后复相C3S-C2S试样的XRD图谱

    图  4  230 ℃下养护14 d后复相C3S-C2S试样的TG-DTG曲线图

    图  5  230 ℃下养护14 d后复相C3S-C2S试样的SEM图

    图  6  G级油井水泥与低热水泥复配体系抗压强度变化

    表  1  不同比例的复相C3S-C2S矿物体系配方设计

    试样C3S-C2S矿物体系
    (C3S∶C2S)
    硅粉/
    %
    水/
    %
    相对
    钙硅比
    A100%(56∶28)0662.60
    B100%(49∶35)0662.51
    C100%(42∶42)0662.43
    D100%(34∶50)0662.34
    E100%(56∶28)4092.41.10
    F100%(49∶35)4092.41.07
    G100%(42∶42)4092.41.05
    H100%(34∶50)4092.41.03
      注:硅粉和水的加量为C3S-C2S矿物体系混合物的重量百分比。
    下载: 导出CSV

    表  2  复相试样水化产物含量(%)

    试样钙硅比针硅钙石佳羟硅钙石莱拉粒硅钙石硬硅钙石
    A2.6022.6041.2636.14
    B2.5117.9938.3643.61
    C2.4316.3435.3548.31
    D2.3413.2130.5356.28
    E1.1023.8676.14
    F1.0721.0878.92
    G1.0518.6681.34
    H1.0316.7283.27
    下载: 导出CSV

    表  3  复配水泥浆体系配方

    水泥浆水泥/%硅粉/
    %
    悬浮剂/
    %
    降失水剂/
    %
    分散剂/
    %
    水/
    %
    G级低热
    1#:100%G级油井水泥体系100251.81.50.454
    100301.81.50.456
    100351.81.50.457
    100401.81.50.459
    2#:90%G级+10%
    低热水泥体系
    9010251.81.50.454
    9010301.81.50.456
    9010351.81.50.457
    9010401.81.50.459
    3#:70%G级+30%
    低热水泥体系
    7030251.81.50.454
    7030301.81.50.456
    7030351.81.50.457
    7030401.81.50.459
    4#:50%G级+50%
    低热水泥体系
    5050251.81.50.454
    5050301.81.50.456
    5050351.81.50.457
    5050401.81.50.459
    5#:30%G级+70%
    低热水泥体系
    3070251.81.50.454
    3070301.81.50.456
    3070351.81.50.457
    3070401.81.50.459
    6#:10%G级+90%
    低热水泥体系
    1090251.81.50.454
    1090301.81.50.456
    1090351.81.50.457
    1090401.81.50.459
      注:G级油井水泥和低热硅酸盐水泥共同构成100%水泥,硅粉、悬浮剂、降失水剂、分散剂和水的用量为水泥总重量的百分比。
    下载: 导出CSV

    表  4  复配水泥主要化学组成及矿物组成

    水泥浆化学组成/%矿物组成/%
    SiO2CaOAl2O3Fe2O3MgOSO3K2ONa2OLossC3SC2SC3AC4AF
    1#22.1363.892.545.051.642.140.510.121.8754.4222.482.0015.12
    2#22.2963.742.705.071.622.140.510.121.8752.2224.492.0115.21
    3#22.6063.433.025.121.572.130.520.121.8647.8128.502.0215.39
    4#22.9263.133.345.161.522.120.520.131.8643.4032.512.0315.57
    5#23.2362.823.655.201.472.110.520.131.8638.9936.522.0415.74
    6#23.5462.513.975.251.422.100.530.131.8534.5840.532.0515.92
    下载: 导出CSV
  • [1] 柴瑞瑞,李纲. 可再生清洁能源与传统能源清洁利用: 发电企业能源结构转型的演化博弈模型[J]. 系统工程理论与实践,2022,42(1):184-197.

    CHAI Ruirui, LI Gang. Renewable clean energy and clean utilization of traditional energy: An evolutionary game model of energy structure transformation of power enterprises[J]. Systems Engineering-Theory & Practice, 2022, 42(1):184-197.
    [2] 崔荣国,郭娟,程立海,等. 全球清洁能源发展现状与趋势分析[J]. 地球学报,2021,42(2):179-186.

    CUI Rongguo, GUO Juan, CHENG Lihai, et al. Status and trends analysis of global clean energies[J]. Acta Geoscientica Sinica, 2021, 42(2):179-186.
    [3] 王沣浩,蔡皖龙,王铭,等. 地热能供热技术研究现状及展望[J]. 制冷学报,2021,42(1):14-22.

    WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1):14-22.
    [4] 黄璜,刘然,李茜,等. 地热能多级利用技术综述[J]. 热力发电,2021,50(9):1-10.

    HUANG Huang, LIU Ran, LI Qian, et al. Overview on multi-level utilization techniques of geothermal energy[J]. Thermal Power Generation, 2021, 50(9):1-10.
    [5] HUANG W, CAO W, JIANG F. A novel single-well geothermal system for hot dry rock geothermal energy exploitation[J]. Energy, 2018, 162:44-630.
    [6] MA Z, PENG L, LI J, et al. The situation analysis of hot dry rock geothermal energy development in China-based on structural equation modeling[J]. Heliyon, 2022, 8(12):e12123.
    [7] ZHANG Wenyang, MA Yong, YANG Ruoyu, et al. Effects of ethylene diamine tetraacetic acid and calcium nitrate on high-temperature cementing slurry in a large temperature difference environment[J]. Construction and Building Materials, 2023, 368:130387.
    [8] YIN Weitao, ZHAO Yangsheng, FENG Zijun. Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock[J]. Renewable Energy, 2019(139):71-79.
    [9] 杨雨,徐拴海,张浩,等. 地热井高导热低密度固井材料制备、性能及结构[J]. 钻井液与完井液,2021,38(1):93-101.

    YANG Yu, XU Shuanhai, ZHANG Hao, et al. Preparation properties and structure of high heat conduction and low density cementing materials for geothermal wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):93-101.
    [10] 王成文,陈新,周伟,等. 纳米SiO2溶胶缓解油井水泥高温强度衰退的作用机理[J]. 天然气工业,2019,39(3):72-79.

    WANG Chengwen, CHEN Xin, ZHOU Wei, et al. Working mechanism of nano-SiO2 sol to alleviate the strength decline of oil well cement under high temperature[J]. Natural Gas Industry, 2019, 39(3):72-79.
    [11] 焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):20-512.

    JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):20-512.
    [12] 桑来玉. 硅粉对水泥石强度发展影响规律[J]. 钻井液与完井液,2004,21(6):3-41, 49.

    SANG Laiyu. Law of silica powder influence on cement stone strength development[J]. Driuing Fluid & Completion Fluld, 2004, 21(6):3-41, 49.
    [13] 徐永辉. 深井水泥水化机理研究[D]. 大庆: 东北石油大学, 2007.

    XU Yonghui. A study of cement hydration mechanism in deep wells[D]. Daqing: Northeast Petroleum University, 2007.
    [14] 姚晓,葛荘,汪晓静,等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17-23.

    YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23.
    [15] 孙浩. 稠油火驱水泥石长期密封性能实验研究[D]. 成都: 西南石油大学, 2018.

    SUN Hao. Experimental study on long-term sealing performance of cement stone under in-situ combustion[D]. Chengdu: Southwest Petroleum University, 2018.
    [16] 赵昆鹏,王涛,郭春,等. 高温下赤泥与硅粉协同强化固井水泥石力学性能[J]. 中国粉体技术,2023,29(2):74-80.

    ZHAO Kunpeng, WANG Tao, GUO Chun, et al. Mechanical properties of cement stone reinforced by red mud and silicon fume at high temperature[J]. China Powder Science and Technology, 2023, 29(2):74-80.
    [17] WEI T, CHENG X, GU T, et al. The change and influence mechanism of the mechanical properties of tricalcium silicate hardening at high temperature[J]. Construction and Building Materials, 2021, 308:125065.
    [18] WEI T, CHENG X, LIU H, et al. Crystallization of tricalcium silicate blended with different silica powder dosages at high temperature[J]. Construction and Building Materials, 2022, 316:125884.
    [19] 李华,吴笑梅,樊粤明. 烧成温度对低热水泥性能的影响及其机理研究[J]. 水泥,2007(7):22-5.

    LI Hua, WU Xiaomei, FAN Yueming. Effect of sintering temperature on performance of law-heat portland cement and its mechanism[J]. Cement, 2007(7):22-5.
    [20] CUESTA A, AYUELA A, ARANDA MAG. Belite cements and their activation[J]. Cement Concrete Research, 2021(140):106319.
    [21] 汪智勇,王敏,文寨军,等. 硅酸二钙及以其为主要矿物的低钙水泥的研究进展[J]. 材料导报,2016,30(1):8-73.

    WANG Zhiyong, WANG Min, WEN Zhaijun, et al. Progress on study of dicalcium silicate and low calcium cement with dicalcium silicate as a main mineral composition[J]. Materials Review, 2016, 30(1):8-73.
    [22] STANĚK T, SULOVSKÝ P. Active low-energy belite cement[J]. Cement and Concrete Research, 2015(68):203-210.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  234
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-02-20
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回