留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

JN1H井煤岩气长水平段钻井井壁稳定技术

王在明 陈金霞 沈园园 朱宽亮 李战伟 侯怡 邓威

王在明,陈金霞,沈园园,等. JN1H井煤岩气长水平段钻井井壁稳定技术[J]. 钻井液与完井液,2023,40(3):356-362 doi: 10.12358/j.issn.1001-5620.2023.03.011
引用本文: 王在明,陈金霞,沈园园,等. JN1H井煤岩气长水平段钻井井壁稳定技术[J]. 钻井液与完井液,2023,40(3):356-362 doi: 10.12358/j.issn.1001-5620.2023.03.011
WANG Zaiming, CHEN Jinxia, SHEN Yuanyuan, et al.Borehole wall Stabilization technology for drilling the long horizontal section coal rock gas well JN1H[J]. Drilling Fluid & Completion Fluid,2023, 40(3):356-362 doi: 10.12358/j.issn.1001-5620.2023.03.011
Citation: WANG Zaiming, CHEN Jinxia, SHEN Yuanyuan, et al.Borehole wall Stabilization technology for drilling the long horizontal section coal rock gas well JN1H[J]. Drilling Fluid & Completion Fluid,2023, 40(3):356-362 doi: 10.12358/j.issn.1001-5620.2023.03.011

JN1H井煤岩气长水平段钻井井壁稳定技术

doi: 10.12358/j.issn.1001-5620.2023.03.011
基金项目: 冀东油田科技攻关重大项目“西部探区煤岩气钻采工程关键技术研究” (ZJ2022B02-01) 资助
详细信息
    作者简介:

    王在明,高级工程师,1968年生,2008年获中国石油大学(华东)油气井工程博士学位,主要从事油气钻井技术研究工作。E-mail:ming8082002@126.com

  • 中图分类号: TE254.3

Borehole Wall Stabilization Technology for Drilling the Long Horizontal Section Coal Rock Gas Well JN1H

  • 摘要: 针对鄂尔多斯东缘本溪组8#煤层长水平段钻完井过程中井壁易失稳、井眼延伸难度大的问题,开展了煤岩气钻井井壁稳定技术研究。对可能钻遇的顶板碳质泥岩、夹矸、上部煤层和下部煤层等岩心,开展了X-衍射、电镜扫描、CT扫描、三轴力学等相关实验。实验表明,非煤层黏土矿物含量在35%以上,主要由高岭石和伊利石组成,只含不到5%的伊蒙混层,煤层的黏土矿物含量在10%~18%之间,以高岭石为主,含25%左右的伊蒙混层;岩心裂缝宽度范围在25~1000 μm之间,主要分布在25、40、64、100、160、250、400 μm几个数值附近;最大坍塌压力当量密度是1.36 g/cm3,在中下部煤层位置;从“封堵防塌、井眼清洁、润滑防卡”三个方面设计了钻井液配方,评价结果表明,中压滤失量为1.6 mL,高温高压(70 ℃)滤失量为4.4 mL,400 mD、100 D砂盘PPT滤失量小于15 mL,表明配方具有良好的封堵性能。井壁稳定技术在JN1H井进行了现场应用,完成2019 m水平段施工,钻完井周期为28.25 d,钻完井过程顺利,实现了煤岩气长水平段钻井井壁稳定。

     

  • 图  1  2#夹矸裂缝CT扫描图像

    图  2  2#夹矸裂缝分布

    图  3  井深2231.22 m煤层坍塌压力当量密度预测风险云图

    表  1  水平段可能钻遇岩石全岩矿物组成

    岩性岩样井深/m矿物含量/%
    石英斜长石方解石菱铁矿黄铁矿非晶质黏土矿物
    非煤层碳质泥岩 2226.4522.12.29.58.522.635.1
    1#夹矸2227.6412.33.312.626.745.1
    2#夹矸2228.914.75.610.55.623.450.2
    煤层上部煤层2227.4212.613.512.648.912.4
    上部煤层2228.4013.75.315.34.743.217.8
    下部煤层2231.2211.47.416.448.216.6
    下部煤层2232.0015.79.115.43.34610.5
    下载: 导出CSV

    表  2  水平段可能钻遇岩石黏土矿物组成

    岩性岩样井深/
    m
    黏土矿物相对含量/%
    IKI/S
    非煤层碳质泥岩 2226.4543.252.14.7
    1#夹矸2227.6412.384.33.4
    2#夹矸2228.9114.481.93.7
    煤层上部煤层2227.4222.547.529.8
    上部煤层2228.4015.160.424.4
    下部煤层2231.229.069.321.7
    下部煤层2232.0011.465.722.8
      注:I为伊利石,K为高岭石,I/S为伊蒙混层。
    下载: 导出CSV

    表  3  JN1H井水平段可能钻遇地层坍塌压力

    岩性井深/m直井/
    g·cm−3
    当量密度/(g/cm−3
    最小水平
    主应力
    最大水平
    主应力
    非煤层碳质泥岩2226.451.171.150.95
    1#夹矸2227.641.221.181.08
    2#夹矸2228.911.241.221.02
    煤层上部煤层2227.421.281.251.32
    上部煤层2228.401.201.331.35
    下部煤层2231.221.151.261.36
    下载: 导出CSV

    表  4  JN1H井水平段钻井液性能

    ρ/
    g·cm−3
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    黏滞
    系数
    极压润滑系数FLPPT/mL
    400 mD100 D
    1.387656200.3573/91.660.05240.11610.211.6
      注:70 ℃老化16 h后测试。
    下载: 导出CSV

    表  5  JN1H井水平段钻井液现场性能(本溪组)

    井深/mρ/
    g·cm−3
    FV/
    s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    pHCs/
    %
    Vs/
    %
    黏滞系数
    27681.38725213.280.262/73.078.50.318 0.0699
    31531.38764913.230.273/83.068.50.2170.0699
    35261.39715316.430.313/82.568.50.2180.0699
    38171.39795114.790.293/92.058.00.2190.0699
    41801.39754815.840.333/82.058.00.2190.0699
    44871.40705116.320.323/92.058.00.2200.0699
    47871.39725316.430.313/92.058.00.2200.0699
    下载: 导出CSV
  • [1] 林海,陈磊,张艺聪,等. 宁武盆地 4#和 9#煤岩坍塌机理[J]. 钻井液与完井液,2014,31(5):14-17. doi: 10.3969/j.issn.1001-5620.2014.05.004

    LIN Hai, CHEN Lei, ZHANG Yicong, et al. 4# and 9# coal collapse mechanism in Ningwu basin[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):14-17. doi: 10.3969/j.issn.1001-5620.2014.05.004
    [2] 李曙光,王红娜,徐博瑞,等. 大宁−吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165-172. doi: 10.12363/issn.1001-1986.21.12.0800

    LI Shuguang, WANG Hongna, XU Borui, et al. Influencing factors on gas production effect of acid fractured CBM wells in deep coal seam of Daning-Jixian block[J]. Coal Geology & Exploration, 2022, 50(3):165-172. doi: 10.12363/issn.1001-1986.21.12.0800
    [3] 杨陆武. 难动用煤层气资源的高产开采技术研究: 论煤层气资源的特殊性及其开发工程中的“窗–尾效应”[J]. 煤炭学报,2016,41(1):32-39.

    YANG Luwu. Produce high rate gas from poor CBM reservoir: study on CBM resource types and “window–long tail effects”of reservoir during delivering gas[J]. Journal of China Coal Society, 2016, 41(1):32-39.
    [4] 朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55-60. doi: 10.3787/j.issn.1000-0976.2020.01.007

    ZHU Qingzhong, YANG Yanhui, ZUO Yinqing, et al. On the scientific exploitation of high–rank CBM resources[J]. Natural Gas Industry, 2020, 40(1):55-60. doi: 10.3787/j.issn.1000-0976.2020.01.007
    [5] 邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433-442. doi: 10.11698/PED.2019.03.02

    ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal−measure gas[J]. Petroleum Exploration and Development, 2019, 46(3):433-442. doi: 10.11698/PED.2019.03.02
    [6] 杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823

    YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823
    [7] 叶建平,侯淞译,张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15-22.

    YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3):15-22.
    [8] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159. doi: 10.13225/j.cnki.jccs.2017.1422

    ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1):150-159. doi: 10.13225/j.cnki.jccs.2017.1422
    [9] 秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513-2522. doi: 10.13225/j.cnki.jccs.dz20.0621

    QIN Yong, WU Jianguang, LI Guozhang, et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society, 2020, 45(7):2513-2522. doi: 10.13225/j.cnki.jccs.dz20.0621
    [10] 王红伟,姜好仁,马财林,等. 大宁–吉县地区午城煤层气试验井组试采效果评价及影响因素分析[J]. 中国煤层气,2006,3(2):31-36. doi: 10.3969/j.issn.1672-3074.2006.02.008

    WANG Hongwei, JIANG Haoren, MA Cailin, et al. The analys is of production effect and the discussion of influencing factors of Wucheng coalbed methane test well group in Daning–Jixian area[J]. China Coalbed Methane, 2006, 3(2):31-36. doi: 10.3969/j.issn.1672-3074.2006.02.008
    [11] 王成旺,冯延青,杨海星,等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探,2018,46(5):212-218. doi: 10.3969/j.issn.1001-1986.2018.05.033

    WANG Chengwang, FENG Yanqing, YANG Haixing, et al. Potential tapping technology and its application in old CBM wells in Hancheng block of Ordos basin[J]. Coal Geology & Exploration, 2018, 46(5):212-218. doi: 10.3969/j.issn.1001-1986.2018.05.033
    [12] 屈平,申瑞臣,付利,等. 三维离散元在煤层水平井井壁稳定中的应用[J]. 石油学报,2011,32(1):153-157. doi: 10.7623/syxb201101026

    QU Ping, SHEN Rui-chen, FU Li, et al. Application of the 3D discrete element method in the wellbore stability of coal-bedhorizontalwells[J]. Acta Petrolei Sinica, 2011, 32(1):153-157. doi: 10.7623/syxb201101026
    [13] 黄维安,邱正松,杨力,等. 煤层气钻井井壁失稳机理及防塌钻井液技术[J]. 煤田地质与勘探,2013,41(2):37-41.

    HUANG Weian, QIU Zhengsong, YANG Li, et al. CBM drilling borehole instability mechanism and anti–sloughing drilling fluid technology[J]. Coal Geology & Exploration, 2013, 41(2):37-41.
    [14] 汪伟英,夏健,陶杉,等. 钻井液对煤层气井壁稳定性影响实验研究[J]. 石油钻采工艺,2011,33(3):94-96. doi: 10.3969/j.issn.1000-7393.2011.03.025

    WANG Weiying, XIA Jian, TAO Shan, et al. The experimental study of the impact on CBM drilling wellbore stability[J]. Oil Drilling and Production Technology, 2011, 33(3):94-96. doi: 10.3969/j.issn.1000-7393.2011.03.025
    [15] 陈在君,刘顶运,李登前. 煤层垮塌机理分析及钻井液防塌探讨[J]. 钻井液与完井液,2007,24(4):28-36. doi: 10.3969/j.issn.1001-5620.2007.04.009

    Chen Zaijun, Liu Dingyun, Li Dengqian. Collapse mechanism analysis of coal seam and the drilling fluid preventing collapse[J]. Drilling Fluid & Completion Fluid, 2007, 24(4):28-36. doi: 10.3969/j.issn.1001-5620.2007.04.009
    [16] 方俊伟,吕忠楷,何仲,等. 化学凝胶堵剂承压堵漏技术在顺北3 井的应用[J]. 钻井液与完井液,2017,34(6):13-17. doi: 10.3969/j.issn.1001-5620.2017.06.003

    FANG Junwei, LU zhongkai, HE Zhong, et al. Application of chemical gel LCM on well Shunbei-3[J]. Drilling Fluid & Completion Fuild, 2017, 34(6):13-17. doi: 10.3969/j.issn.1001-5620.2017.06.003
    [17] 聂志宏,巢海燕,刘莹,等. 鄂尔多斯盆地东缘深层煤层气生产特征及开发对策: 以大宁–吉县区块为例[J]. 煤炭学报,2018,43(6):1738-1746.

    NIE Zhihong, CHAO Haiyan, LIU Ying, et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos basin: taking Daning−Jixian block for example[J]. Journal of China Coal Society, 2018, 43(6):1738-1746.
    [18] 赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28-34.

    CHAO Yangsheng, MENG Qiaorong, KANG Tianhe, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite[J].Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28-34.
    [19] 付裕,陈新,冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报,2020,45(2):568-578.

    FU Yu, CHEN Xin, FENG Zhongliang. Characteristics of coal rockfractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2):568-578.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  225
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 修回日期:  2023-01-24
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回