留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超深井钻井液污染套管机理

宋瀚轩 郑连杰 张世岭 郭继香 张小军 高晨豪 刘宏宇

宋瀚轩,郑连杰,张世岭,等. 超深井钻井液污染套管机理[J]. 钻井液与完井液,2023,40(3):340-348 doi: 10.12358/j.issn.1001-5620.2023.03.009
引用本文: 宋瀚轩,郑连杰,张世岭,等. 超深井钻井液污染套管机理[J]. 钻井液与完井液,2023,40(3):340-348 doi: 10.12358/j.issn.1001-5620.2023.03.009
SONG Hanxuan, ZHENG Lianjie, ZHANG Shiling, et al.Mechanisms casing contamination by drilling fluids in ultra-deep well drilling[J]. Drilling Fluid & Completion Fluid,2023, 40(3):340-348 doi: 10.12358/j.issn.1001-5620.2023.03.009
Citation: SONG Hanxuan, ZHENG Lianjie, ZHANG Shiling, et al.Mechanisms casing contamination by drilling fluids in ultra-deep well drilling[J]. Drilling Fluid & Completion Fluid,2023, 40(3):340-348 doi: 10.12358/j.issn.1001-5620.2023.03.009

超深井钻井液污染套管机理

doi: 10.12358/j.issn.1001-5620.2023.03.009
基金项目: 中国石油天然气股份有限公司科学研究与技术开发项目“200 ℃/105 MPa完井井筒多功能一体化作业系统研发”(2021ZG10)
详细信息
    作者简介:

    宋瀚轩,1997年生,在读博士生,主要从事油田化学方向研究。E-mail:1185041519@qq.com

    通讯作者:

    郭继香,E-mail:guojx002@163.com

  • 中图分类号: TE254

Mechanisms Casing Contamination by Drilling Fluids in Ultra-Deep Well Drilling

  • 摘要: 针对超深井钻井过程中钻井液对套管的污染问题,分析了超深井环境下钻井液在套管壁的残留率,明确温度是影响钻井液残留的主要因素。在超深井高温下,油基钻井液发生破乳效应,由疏水转变为弱亲水性;水基钻井液发生脱水效应,由亲水转为弱疏水性。采用XRD、元素分析、四组分、傅里叶红外光谱等测试方法,对钻井液残留物的成分进行分析,得到水基钻井液残留物的主要成分为纤维素、磺化酚醛树脂携带包裹黏土颗粒与重晶石混合物;油基钻井液残留物主要成分为沥青和油酸酰胺包裹重晶石混合物。结合测试分析结果,通过分子动力学模拟计算钻井液中大分子在套管壁上的吸附效应,得到沥青主要成分卟啉和油酸酰胺与套管壁的结合能分别为−54.18 kcal/mol和−19.72 kcal/mol,纤维素和磺化树脂与套管壁的结合能分别为−19.09 kcal/mol和−93.19 kcal/mol,证实了水基钻井液中有机组分在高温状态下较油基钻井液更具有黏附性。通过对钻井液污染机理的分析,为日后套管清洗提供理论性指导。

     

  • 图  1  超深井套管污染

    图  2  套管污染模拟器

    图  3  钻井液残留物固液分离过程

    图  4  不同条件下钻井液在套管的残留率

    图  5  水与油基/水基钻井液污染后P110钢在不同温度的接触角    

    图  6  不同钻井液在不同温度下的微观状态变化

    图  7  油/水基钻井液残留物固、液占比

    图  8  油基/水基钻井液残留物液相  四组分和残留物固相XRD

    图  9  油基/水基钻井液残留物液相傅里叶红外光谱

    图  10  油/水基钻井液残留物主要黏附物

    图  11  分子动力学模拟分子吸附能

    图  12  不同污染物与套管吸附结合能对比

    图  13  微乳液拟三相图

    图  14  微乳液对 200 ℃ 下钻井液污染的P110 钢片的清洗效率

    表  1  实验用水基及油基钻井液样品性能

    配方AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    (Pa/Pa)
    ES/
    V
    FLHTHP/
    mL
    1#423662.5/13.03.6
    2#242043.0/5.05062.8
    下载: 导出CSV

    表  2  实验用套管P110钢的化学元素组成

    元素质量分数/%元素质量分数/%
    C0.29P<0.02
    Si0.27S<0.01
    Mn0.50Cu<0.20
    Cr0.90Ni<0.20
    Mo0.18V<0.08
    下载: 导出CSV

    表  3  钻井残留物固相元素分析

    油基钻井液水基钻井液
    分析物化学式浓度/%分析物化学式浓度/%
    NaNa2O0.272NaNa2O0.757
    MgMgO0.391MgMgO1.244
    AlAI2O30.615AlAI2O35.914
    SiSiO21.457SiSiO220.154
    SSO329.753PP2O50.032
    KK2O0.037SSO323.343
    CaCaO4.424KK2O0.424
    FeFe2O30.283CaCaO0.781
    NiNiO0.017TiTiO20.194
    CuCuO0.018MnMnO0.037
    SrSrO0.717FeFe2O33.328
    BaBaO59.771ZnZnO0.009
    ClCl2.246RbRb2O0.003
    SrSrO0.653
    BaBaO42.913
    ClCl0.11
    AmAm0.103
    下载: 导出CSV
  • [1] YANG P, LIU K, LIU J, et al. Petroleum charge history of deeply buried carbonate reservoirs in the Shuntuoguole low uplift, Tarim basin, west China[J]. Marine and Petroleum Geology, 2021, 128:105063. doi: 10.1016/j.marpetgeo.2021.105063
    [2] QIAO Z, ZHANG S, SHEN A, et al. Features and origins of massive dolomite of lower Ordovician Penglaiba formation in the northwest Tarim basin: Evidence from petrography and geochemistry[J]. Petroleum Science, 2021, 18(5):1323-1341. doi: 10.1016/j.petsci.2021.03.001
    [3] ZHU G, MILKOV A V, LI J, et al. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China[J]. Journal of Petroleum Science and Engineering, 2020
    [4] 张雁, 屈沅治, 张志磊, 等. 超高温水基钻井液技术研究现状及发展方向[J]. 油田化学, 2022: 1-13.

    ZHANG Yan, QU Yuanzhi, ZHANG Zhilei, et al. Research status and development direction of ultra-high temperature water-based drilling fluid technology[J]. Oilfield Chemistry, 2022: 1-13.
    [5] 盛勇,叶艳,朱金智,等. 内核纳米乳液用于塔西南地区钻井液的优化[J]. 钻井液与完井液,2021,38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007

    SHENG Yong, YE Yan, ZHU Jinzhi, et al. Optimization of drilling fluid using kernel nanoemulsion in southwest Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007
    [6] 邵国彪,武宁宁,王凯,等. 废弃油基钻井液国内外处置技术研究[J]. 中国石油和化工标准与质量,2021,41(22):191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091

    SHAO Guobiao, WU Ningning, WANG Kai, et al. Research on disposal technology of used oil-base drilling fluid at home and abroad[J]. China Petroleum and Chemical Standards and Quality, 2021, 41(22):191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091
    [7] 邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价[J]. 钻井液与完井液,2021,38(6):663-670.

    QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Research and performance evaluation of ultra-high temperature and high density oil-base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670.
    [8] LIU J, ZHANG X, ZHANG W, et al. Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development[J]. Petroleum Science, 2022, 19(2):916-926. doi: 10.1016/j.petsci.2021.09.045
    [9] 宋瀚轩, 叶艳, 周志世, 等. 石蜡微乳液的研制及其在水基钻井液中的应用[J]. 钻井液与完井液, 2022: 1-11.

    SONG Hanxuan, YE Yan, ZHOU Zhishi, et al. Preparation of paraffin microemulsion and its application in water-based drilling fluid [J]. Drilling Fluid & Completion Fluid, 2022: 1-11.
    [10] HERMOSO J, MARTINEZ-BOZA F, GALLEGOS C. Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure[J]. Applied Clay Science, 2014, 87:14-21. doi: 10.1016/j.clay.2013.10.011
    [11] 杨力,唐永帆,刘均,等. 龙会2井井下油管化学解堵工艺技术应用[J]. 石油与天然气化工,2006(2):137-139.

    YANG Li, TANG Yongfan, LIU Jun, et al. Application of chemical plugging technology for downhole tubing in Longhui 2 Well[J]. Chemical Industry of Oil & Gas, 2006(2):137-139.
    [12] 杨丽丽,王爱佳,蒋官澄,等. RAFT聚合制备嵌段聚合物结构对降滤失剂性能的影响[J]. 钻井液与完井液,2022,39(1):23-28.

    YANG Lili, WANG Aijia, JIANG Guancheng, et al. Effect of RAFT polymerization of block polymer structure on properties of fluid loss reducer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):23-28.
    [13] 李佳琦,杨海彤,葛兵,等. 一种耐高温交联淀粉钻井液降滤失剂的制备与评价[J]. 特种油气藏,2022,29(4):164-168.

    LI Jiaqi, YANG Haitong, GE Bing, et al. Preparation and evaluation of a high temperature resistant fluid loss reducer for starch drilling fluid[J]. Special Oil and Gas Reservoirs, 2022, 29(4):164-168.
    [14] 赵向阳,杨顺辉,郑德帅. 水基钻井液高温高压密度预测新模型[J]. 科学技术与工程,2013,13(15):4334-4338. doi: 10.3969/j.issn.1671-1815.2013.15.035

    ZHAO Xiangyang, YANG Shunhui, ZHENG Desai. A new high temperature and high pressure density prediction model for water-based drilling fluid[J]. Science Technology and Engineering, 2013, 13(15):4334-4338. doi: 10.3969/j.issn.1671-1815.2013.15.035
    [15] 龙怀远,陈武,刘罡,等. 高温高压油基钻井液乳化稳定性评价装置与方法[J]. 钻井液与完井液,2021,38(6):738-742.

    LONG Huaiyuan, CHEN Wu, LIU Gang, et al. Evaluation device and method for emulsification stability of high temperature and high pressure oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):738-742.
    [16] 史佳欢. 加重剂类型对油基钻井液性能的影响评价分析[J]. 西部探矿工程,2022,34(9):72-74.

    SHI Jiahuan. Evaluation and analysis of influence of weighting agent types on properties of oil-base drilling fluid[J]. Western Exploration Engineering, 2022, 34(9):72-74.
    [17] 杜征鸿,沈建文,睢圣,等. 耐高温核壳型油基钻井液纳米封堵剂的制备与性能评价[J]. 油田化学,2022,39(1):1-4. doi: 10.19346/j.cnki.1000-4092.2022.01.001

    DU Zhenghong, SHEN Jianwen, SUI Sheng, et al. Preparation and performance evaluation of high temperature resistant core-shell type oil base drilling fluid nano plugging agent[J]. Oilfield Chemistry, 2022, 39(1):1-4. doi: 10.19346/j.cnki.1000-4092.2022.01.001
    [18] BAO Q, HUANG L, XIU J, et al. Study on the thermal washing of oily sludge used by rhamnolipid/sophorolipid binary mixed bio-surfactant systems[J]. Ecotoxicology and Environmental Safety, 2022, 240:113696. doi: 10.1016/j.ecoenv.2022.113696
    [19] YE Y, LI J, ZHANG Q, et al. Nanoemulsion for oil-contaminated oil-based drill cuttings removel in lab[J]. International Journal of Hydrogen Energy, 2017, 42(29):18734-18740. doi: 10.1016/j.ijhydene.2017.05.011
    [20] ZHANG W, DUAN T, LI M, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2):367-380. doi: 10.1016/S1876-3804(21)60029-0
    [21] 王翀,谢飞燕,刘爱萍,等. 油基钻井液用冲洗液BCS-020L研制及应用[J]. 石油钻采工艺,2013,35(6):36-39. doi: 10.13639/j.odpt.2013.06.027

    WANG Chong, XIE Feiyan, LIU Aiping, et al. Development and application of BCS-020L washing fluid for oil-based drilling fluid[J]. Oil Drilling & Production Technology, 2013, 35(6):36-39. doi: 10.13639/j.odpt.2013.06.027
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  276
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 修回日期:  2023-01-13
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回