Mechanisms Casing Contamination by Drilling Fluids in Ultra-Deep Well Drilling
-
摘要: 针对超深井钻井过程中钻井液对套管的污染问题,分析了超深井环境下钻井液在套管壁的残留率,明确温度是影响钻井液残留的主要因素。在超深井高温下,油基钻井液发生破乳效应,由疏水转变为弱亲水性;水基钻井液发生脱水效应,由亲水转为弱疏水性。采用XRD、元素分析、四组分、傅里叶红外光谱等测试方法,对钻井液残留物的成分进行分析,得到水基钻井液残留物的主要成分为纤维素、磺化酚醛树脂携带包裹黏土颗粒与重晶石混合物;油基钻井液残留物主要成分为沥青和油酸酰胺包裹重晶石混合物。结合测试分析结果,通过分子动力学模拟计算钻井液中大分子在套管壁上的吸附效应,得到沥青主要成分卟啉和油酸酰胺与套管壁的结合能分别为−54.18 kcal/mol和−19.72 kcal/mol,纤维素和磺化树脂与套管壁的结合能分别为−19.09 kcal/mol和−93.19 kcal/mol,证实了水基钻井液中有机组分在高温状态下较油基钻井液更具有黏附性。通过对钻井液污染机理的分析,为日后套管清洗提供理论性指导。Abstract: By analyzing the residual rate of drilling fluids on the surfaces of casing strings in ultra-deep wells, it was ascertained that temperature is the main factor affecting the residue of drilling fluids on the surfaces of the drilling strings. In high temperature ultra-deep wells, oil-based drilling fluids are apt to lose their emulsion stability and become demulsified, turning from hydrophobic to hydrophilic. Water-based drilling fluids, on the other hand, are dewatered at elevated temperatures, turning from hydrophilic to hydrophobic. Using XRD, element analysis, SARA and FTIR methods, the components of the residues of a water-based drilling fluid and an oil-based drilling fluid commonly used were analyzed. The main components of the residues were known to be cellulose and the mixture of clay and barite particles coated with sulfonated phenolic resin for the water based drilling fluid, and asphalt and barite coated with oleic acid amide for the oil-based drilling fluid. The adsorption effect of the macromolecules in a drilling fluid on the surfaces of casing strings was calculated using molecular dynamics simulation based on the analyses of the residues in the drilling fluids. The calculation showed that the binding energy between porphyrin (the major component of asphalt) and the casing wall is -54.18 kcal/mol, the binding energy between oleic acid and the casing wall is -19.72 kcal/mol, the binding energy between cellulose and the casing wall is -19.09 kcal/mol, and the binding energy between sulfonated phenolic resin and the casing wall is -93.19 kcal/mol, respectively. These results have proved that compared with oil-based muds, the organic components in a water-based are much more adhesive at elevated temperatures. This analysis of the casing contamination by drilling fluids will provide theoretical guidance to the cleansing of casing strings in the future.
-
Key words:
- Drilling fluid /
- Contamination to casing string /
- Ultra-deep well
-
表 1 实验用水基及油基钻井液样品性能
配方 AV/
mPa·sPV/
mPa·sYP/
PaGel/
(Pa/Pa)ES/
VFLHTHP/
mL1# 42 36 6 2.5/13.0 3.6 2# 24 20 4 3.0/5.0 506 2.8 表 2 实验用套管P110钢的化学元素组成
元素 质量分数/% 元素 质量分数/% C 0.29 P <0.02 Si 0.27 S <0.01 Mn 0.50 Cu <0.20 Cr 0.90 Ni <0.20 Mo 0.18 V <0.08 表 3 钻井残留物固相元素分析
油基钻井液 水基钻井液 分析物 化学式 浓度/% 分析物 化学式 浓度/% Na Na2O 0.272 Na Na2O 0.757 Mg MgO 0.391 Mg MgO 1.244 Al AI2O3 0.615 Al AI2O3 5.914 Si SiO2 1.457 Si SiO2 20.154 S SO3 29.753 P P2O5 0.032 K K2O 0.037 S SO3 23.343 Ca CaO 4.424 K K2O 0.424 Fe Fe2O3 0.283 Ca CaO 0.781 Ni NiO 0.017 Ti TiO2 0.194 Cu CuO 0.018 Mn MnO 0.037 Sr SrO 0.717 Fe Fe2O3 3.328 Ba BaO 59.771 Zn ZnO 0.009 Cl Cl 2.246 Rb Rb2O 0.003 Sr SrO 0.653 Ba BaO 42.913 Cl Cl 0.11 Am Am 0.103 -
[1] YANG P, LIU K, LIU J, et al. Petroleum charge history of deeply buried carbonate reservoirs in the Shuntuoguole low uplift, Tarim basin, west China[J]. Marine and Petroleum Geology, 2021, 128:105063. doi: 10.1016/j.marpetgeo.2021.105063 [2] QIAO Z, ZHANG S, SHEN A, et al. Features and origins of massive dolomite of lower Ordovician Penglaiba formation in the northwest Tarim basin: Evidence from petrography and geochemistry[J]. Petroleum Science, 2021, 18(5):1323-1341. doi: 10.1016/j.petsci.2021.03.001 [3] ZHU G, MILKOV A V, LI J, et al. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China[J]. Journal of Petroleum Science and Engineering, 2020 [4] 张雁, 屈沅治, 张志磊, 等. 超高温水基钻井液技术研究现状及发展方向[J]. 油田化学, 2022: 1-13.ZHANG Yan, QU Yuanzhi, ZHANG Zhilei, et al. Research status and development direction of ultra-high temperature water-based drilling fluid technology[J]. Oilfield Chemistry, 2022: 1-13. [5] 盛勇,叶艳,朱金智,等. 内核纳米乳液用于塔西南地区钻井液的优化[J]. 钻井液与完井液,2021,38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007SHENG Yong, YE Yan, ZHU Jinzhi, et al. Optimization of drilling fluid using kernel nanoemulsion in southwest Tarim Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007 [6] 邵国彪,武宁宁,王凯,等. 废弃油基钻井液国内外处置技术研究[J]. 中国石油和化工标准与质量,2021,41(22):191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091SHAO Guobiao, WU Ningning, WANG Kai, et al. Research on disposal technology of used oil-base drilling fluid at home and abroad[J]. China Petroleum and Chemical Standards and Quality, 2021, 41(22):191-192. doi: 10.3969/j.issn.1673-4076.2021.22.091 [7] 邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价[J]. 钻井液与完井液,2021,38(6):663-670.QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Research and performance evaluation of ultra-high temperature and high density oil-base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670. [8] LIU J, ZHANG X, ZHANG W, et al. Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development[J]. Petroleum Science, 2022, 19(2):916-926. doi: 10.1016/j.petsci.2021.09.045 [9] 宋瀚轩, 叶艳, 周志世, 等. 石蜡微乳液的研制及其在水基钻井液中的应用[J]. 钻井液与完井液, 2022: 1-11.SONG Hanxuan, YE Yan, ZHOU Zhishi, et al. Preparation of paraffin microemulsion and its application in water-based drilling fluid [J]. Drilling Fluid & Completion Fluid, 2022: 1-11. [10] HERMOSO J, MARTINEZ-BOZA F, GALLEGOS C. Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure[J]. Applied Clay Science, 2014, 87:14-21. doi: 10.1016/j.clay.2013.10.011 [11] 杨力,唐永帆,刘均,等. 龙会2井井下油管化学解堵工艺技术应用[J]. 石油与天然气化工,2006(2):137-139.YANG Li, TANG Yongfan, LIU Jun, et al. Application of chemical plugging technology for downhole tubing in Longhui 2 Well[J]. Chemical Industry of Oil & Gas, 2006(2):137-139. [12] 杨丽丽,王爱佳,蒋官澄,等. RAFT聚合制备嵌段聚合物结构对降滤失剂性能的影响[J]. 钻井液与完井液,2022,39(1):23-28.YANG Lili, WANG Aijia, JIANG Guancheng, et al. Effect of RAFT polymerization of block polymer structure on properties of fluid loss reducer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):23-28. [13] 李佳琦,杨海彤,葛兵,等. 一种耐高温交联淀粉钻井液降滤失剂的制备与评价[J]. 特种油气藏,2022,29(4):164-168.LI Jiaqi, YANG Haitong, GE Bing, et al. Preparation and evaluation of a high temperature resistant fluid loss reducer for starch drilling fluid[J]. Special Oil and Gas Reservoirs, 2022, 29(4):164-168. [14] 赵向阳,杨顺辉,郑德帅. 水基钻井液高温高压密度预测新模型[J]. 科学技术与工程,2013,13(15):4334-4338. doi: 10.3969/j.issn.1671-1815.2013.15.035ZHAO Xiangyang, YANG Shunhui, ZHENG Desai. A new high temperature and high pressure density prediction model for water-based drilling fluid[J]. Science Technology and Engineering, 2013, 13(15):4334-4338. doi: 10.3969/j.issn.1671-1815.2013.15.035 [15] 龙怀远,陈武,刘罡,等. 高温高压油基钻井液乳化稳定性评价装置与方法[J]. 钻井液与完井液,2021,38(6):738-742.LONG Huaiyuan, CHEN Wu, LIU Gang, et al. Evaluation device and method for emulsification stability of high temperature and high pressure oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):738-742. [16] 史佳欢. 加重剂类型对油基钻井液性能的影响评价分析[J]. 西部探矿工程,2022,34(9):72-74.SHI Jiahuan. Evaluation and analysis of influence of weighting agent types on properties of oil-base drilling fluid[J]. Western Exploration Engineering, 2022, 34(9):72-74. [17] 杜征鸿,沈建文,睢圣,等. 耐高温核壳型油基钻井液纳米封堵剂的制备与性能评价[J]. 油田化学,2022,39(1):1-4. doi: 10.19346/j.cnki.1000-4092.2022.01.001DU Zhenghong, SHEN Jianwen, SUI Sheng, et al. Preparation and performance evaluation of high temperature resistant core-shell type oil base drilling fluid nano plugging agent[J]. Oilfield Chemistry, 2022, 39(1):1-4. doi: 10.19346/j.cnki.1000-4092.2022.01.001 [18] BAO Q, HUANG L, XIU J, et al. Study on the thermal washing of oily sludge used by rhamnolipid/sophorolipid binary mixed bio-surfactant systems[J]. Ecotoxicology and Environmental Safety, 2022, 240:113696. doi: 10.1016/j.ecoenv.2022.113696 [19] YE Y, LI J, ZHANG Q, et al. Nanoemulsion for oil-contaminated oil-based drill cuttings removel in lab[J]. International Journal of Hydrogen Energy, 2017, 42(29):18734-18740. doi: 10.1016/j.ijhydene.2017.05.011 [20] ZHANG W, DUAN T, LI M, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2):367-380. doi: 10.1016/S1876-3804(21)60029-0 [21] 王翀,谢飞燕,刘爱萍,等. 油基钻井液用冲洗液BCS-020L研制及应用[J]. 石油钻采工艺,2013,35(6):36-39. doi: 10.13639/j.odpt.2013.06.027WANG Chong, XIE Feiyan, LIU Aiping, et al. Development and application of BCS-020L washing fluid for oil-based drilling fluid[J]. Oil Drilling & Production Technology, 2013, 35(6):36-39. doi: 10.13639/j.odpt.2013.06.027 -