留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顺北油气田用抗高温弱凝胶防气侵钻井液体系

赵海洋 范胜 连世鑫 李双贵 陈修平 可点

赵海洋,范胜,连世鑫,等. 顺北油气田用抗高温弱凝胶防气侵钻井液体系[J]. 钻井液与完井液,2023,40(3):332-339 doi: 10.12358/j.issn.1001-5620.2023.03.008
引用本文: 赵海洋,范胜,连世鑫,等. 顺北油气田用抗高温弱凝胶防气侵钻井液体系[J]. 钻井液与完井液,2023,40(3):332-339 doi: 10.12358/j.issn.1001-5620.2023.03.008
ZHAO Haiyang, FAN Sheng, LIAN Shixin, et al.Study on high temperature resistant weak gel anti gas invasion drilling fluid system in Shunbei oil and gas field[J]. Drilling Fluid & Completion Fluid,2023, 40(3):332-339 doi: 10.12358/j.issn.1001-5620.2023.03.008
Citation: ZHAO Haiyang, FAN Sheng, LIAN Shixin, et al.Study on high temperature resistant weak gel anti gas invasion drilling fluid system in Shunbei oil and gas field[J]. Drilling Fluid & Completion Fluid,2023, 40(3):332-339 doi: 10.12358/j.issn.1001-5620.2023.03.008

顺北油气田用抗高温弱凝胶防气侵钻井液体系

doi: 10.12358/j.issn.1001-5620.2023.03.008
基金项目: 中石化科技项目“塔里木盆地特深层钻完井工程技术示范”(P21081-6)
详细信息
    作者简介:

    赵海洋,1973年生,博士,教授级高级工程师,现在从事油气井工程技术研究及管理工作。E-mail:zhaohy@sinopec.com

  • 中图分类号: TE254.3

Study on High Temperature Gas-Cut Resistant Weak Gel Drilling Fluid in Shunbei Oil and Gas Field

  • 摘要: 顺北油气田奥陶系一间房组和鹰山组的碳酸盐岩储层微裂缝发育且气层活跃,钻井液受气侵严重,主要存在油气上窜速度快,频次高,程度严重,漏涌同存等气侵特点。分析总结了顺北油气田现用防气侵方法和存在的问题,提出使用弱凝胶钻井液体系防气侵的对策。为提高该体系的抗高温性及防气侵效果,研制出高温稳定剂MG-HT、抗高温流型调节剂JHVIS、抗高温降滤失剂JHFLO和耐温封堵剂JHSEAL,并优选了其他配套处理剂,形成一套抗温效果好、堵气和承压能力强的抗高温弱凝胶防气侵钻井液体系。该体系抗温可达180 ℃,密度可达1.8 g/cm3,具有较好的流变性、降滤失性和抗污染性;此外,体系的φ6φ3读数均大于5,低剪切速率黏度大于15 000 mPa·s,正向承压能力大于5 MPa,反向承压能力高于1 MPa,具有良好的防气侵效果。为顺北油气田碳酸盐岩裂缝性储层的安全、快速勘探和开发提供了技术支持。

     

  • 图  1  流型调节剂JHVIS加量对体系性能的影响

    图  2  抗高温降滤失剂JHFLO扫描电镜图和外观图

    图  3  耐温封堵剂加量对钻井液性能影响

    图  4  弱凝胶钻井液体系的抑制性能评价

    图  5  弱凝胶钻井液体系高温降解性能评价

    表  1  高温稳定剂加量对体系性能影响

    MG-HT/
    %
    状态AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3FLAPI/
    mL
    FLHTHP/
    mL
    LSRV/
    mPa·s
    0滚前42301214/12
    滚后272432.5/25.619.23200
    0.5滚前45321314/12
    滚后342866/43.212.69200
    1.0滚前49341514/13
    滚后383088/62.811.814 800
    1.5滚前56381815/13
    滚后4132910/82.412.216 200
    2.0滚前67462115/13
    滚后48361210/92.011.617 400
      注:钻井液配方:水+65%甲酸钠+250%HCOOK+1%NaOH+0.5%Na2CO3+0.5%消泡剂Desil+1%PCD156+0.5%JHVIS+2%JHFLO+2%JHSEAL+重晶石,密度为1.80 g/cm3;实验条件:在180 ℃热滚16 h,在50 ℃测试流变性。
    下载: 导出CSV

    表  2  弱凝胶钻井液体系抗温性能评价

    T/℃条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3FLAPI/
    mL
    FLHTHP/
    mL
    LSRV/
    mPa·s
    滚前48321614/12
    120滚后46301613/121.66032 000
    140滚后52381413/112.07.426 500
    160滚后58441412/102.68.223 300
    170滚后52421010/82.68.818 800
    180滚后5042810/83.010.614 800
    190滚后403648/64.616.24800
      注:配方:水+60%甲酸钠+250%HCOOK+1%NaOH+0.5%Na2CO3+0.5%Desil+1%MG-HT+1%PCD156+0.5%JHVIS+2%JHFLO+2%JHSEAL+重晶石(1.80 g/cm3);条件:180 ℃ 热滚16 h后在50 ℃测试。
    下载: 导出CSV

    表  3  弱凝胶钻井液体系加重性能评价

    ρ/
    g·cm−3
    加重剂条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3FLAPI/
    mL
    LSRV/
    mPa·s
    1.2 HCOONa 滚前 38 31 7 6/5 2.6 15000
    1.4 HCOONa+
    HCOOK
    滚后 44 36 8 8/6 2.6 14800
    1.6 HCOONa+
    HCOOK+
    重晶石
    滚后 48 40 8 8/6 2.8 15200
    1.8 HCOONa+
    HCOOK+
    重晶石
    滚后 52 43 9 10/8 2.6 15500
    2.0 HCOONa+
    HCOOK+
    重晶石
    滚后 58 48 10 10/8 3.0 16800
    下载: 导出CSV

    表  4  弱凝胶钻井液体系润滑性能评价

    JHSLIP/
    %
    条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/
    φ3
    EP
    FLAPI/
    mL
    Kf
    0滚后50401010/80.15802.60.1326
    3滚后6854149/70.08602.80.0764
    下载: 导出CSV

    表  5  弱凝胶钻井液体系抗污染性能评价

    污染物条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/
    φ3
    FLAPI/
    mL
    LSRV/
    mPa·s
    0 滚后 52 42 10 10/8 2.6 15 600
    2%NaCl 滚后 60 50 10 7/6 3.4 14 800
    4%NaCl 滚后 68 59 9 5/4 3.2 12 400
    6%NaCl 滚后 72 63 9 5/3 3.4 10 600
    1%CaCl2 滚后 54 43 11 8/6 3.0 13 800
    2%CaCl2 滚后 58 46 12 7/5 3.4 11 400
    1%CaSO4 滚后 52 42 10 7/5 3.6 13 600
    2%CaSO4 滚后 62 50 12 6/4 3.8 10 400
    8%CaCl2+
    4%NaCl
    滚后 70 61 9 5/4 3.0 11 200
    5%模拟地层水 滚后 60 53 7 5/3 3.4 10 400
    10%模拟地层水 滚后 48 42 6 5/3 2.8 9600
    下载: 导出CSV

    表  6  弱凝胶钻井液体系储层保护性能评价

    岩心号ρ/
    g·cm−3
    Ko/
    mD
    Kd/
    mD
    Kd/Ko/
    %
    酸化处理后
    渗透率恢复值/%
    1#1.2010.648.5280.190.4
    2#1.806.623.9860.175.8
    3#1.804.933.0862.576.6
    下载: 导出CSV

    表  7  弱凝胶钻井液体系高温高压流变性能评价

    T/℃AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    φ6/φ3
    505240120.3010/8
    655140110.2810/8
    1004737100.279/7
    120433490.268/6
    150383080.278/5
    180302460.257/5
    下载: 导出CSV

    表  8  弱凝胶钻井液体系岩心驱替封堵防气侵性能评价

    缝宽/
    mm
    正向液驱
    压力/MPa
    完全封堵前
    漏失量/mL
    正向气驱
    压力/MPa
    反相气驱
    压力/MPa
    0.02100>3>1.0
    0.05100.4>3>1.0
    0.10100.8>3>1.2
    0.20100.6>4>2.0
    0.30100.2>4>1.8
    0.40100.1>5>2.2
    0.50100.4>5>1.8
      注:钻井液配方:水+60%甲酸钠+250%HCOOK+1%NaOH+0.5%Na2CO3+0.5%消泡剂Desil+1%MG-HT+1%PCD156+0.5%JHVIS+2%JHFLO+2%JHSEAL+5%JQWY+重晶石,密度为1.80 g/cm3;钻井液在180 ℃热滚16 h。
    下载: 导出CSV
  • [1] 齐彪,方俊伟,朱立鑫,等. 气侵条件下裂缝性地层漏失模拟实验[J]. 科学技术与工程,2021,21(17):7059-7066. doi: 10.3969/j.issn.1671-1815.2021.17.013

    QI Biao, FANG Junwei, ZHU Lixin, et al. Simulation of the lost circulation in fractured formation under the gas invasion conditions[J]. Science Technology and Engineering, 2021, 21(17):7059-7066. doi: 10.3969/j.issn.1671-1815.2021.17.013
    [2] 王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8-15. doi: 10.11911/syztjs.2020003

    WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key techniques for safe drilling in Shunbei carbonate fractured gas reservoir[J]. Petroleum Drilling Techniques, 2020, 48(3):8-15. doi: 10.11911/syztjs.2020003
    [3] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1-17. doi: 10.11698/PED.2022.01.01

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Exploration and development practice and theoretical and technical progress of ultra deep carbonate oil and gas fields in Shunbei, Tarim Basin[J]. Petroleum Exploration and Development, 2022, 49(1):1-17. doi: 10.11698/PED.2022.01.01
    [4] 方俊伟,何仲,熊汉桥,等. 高温高压裂缝性碳酸盐岩气藏封缝堵气技术[J]. 科学技术与工程,2019,19(4):93-98. doi: 10.3969/j.issn.1671-1815.2019.04.014

    FANG Junwei, HE Zhong, XIONG Hanqiao, et al. Sealing technology to control gas cut for fractured carbonate gas reservoirs at high temperature and high pressure[J]. Science Technology and Engineering, 2019, 19(4):93-98. doi: 10.3969/j.issn.1671-1815.2019.04.014
    [5] 罗发强,韩子轩,柴龙,等. 抗高温气滞塞技术的研究与应用[J]. 钻井液与完井液,2019,36(2):165-169. doi: 10.3969/j.issn.1001-5620.2019.02.006

    LUO Faqiang, HAN Zixuan, CHAI Long, et al. Research and application of anti high temperature gas blockage Technology[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):165-169. doi: 10.3969/j.issn.1001-5620.2019.02.006
    [6] 朱杰,熊汉桥,吴若宁,等. 裂缝性气藏成膜堵气钻井液体系室内评价研究[J]. 石油钻采工艺,2019,41(2):147-151. doi: 10.13639/j.odpt.2019.02.005

    ZHU Jie, XIONG Hanqiao, WU Ruoning, et al. Laboratory evaluation of gas plugging drilling fluid system in fractured gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(2):147-151. doi: 10.13639/j.odpt.2019.02.005
    [7] 韩子轩,林永学,柴龙,等. 裂缝性气藏封缝堵气技术研究[J]. 钻井液与完井液,2017,34(01):16-22. doi: 10.3969/j.issn.1001-5620.2017.01.003

    HAN Zixuan, LIN Yongxue, CHAI Long, et al. Research on fracture sealing and gas plugging technology of fractured gas reservoir[J]. Drilling Fluid & Completion Fluid, 2017, 34(01):16-22. doi: 10.3969/j.issn.1001-5620.2017.01.003
    [8] 苏晓明,练章华,方俊伟,等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发,2019,46(1):165-172. doi: 10.11698/PED.2019.01.17

    SU Xiaoming, LIAN Zhanghua, FANG Junwei, et al. Drilling fluid pressure retaining and plugging material suitable for carbonate fracture and cave type abnormal high temperature and high pressure reservoir in Tazhong block[J]. Petroleum Exploration and Development, 2019, 46(1):165-172. doi: 10.11698/PED.2019.01.17
    [9] 柴龙,林永学,金军斌,等. 塔河油田外围高温高压井气滞塞防气窜技术[J]. 石油钻探技术,2018,46(5):40-45. doi: 10.11911/syztjs.2018111

    CHAI Long, LIN Yongxue, JIN Junbin, et al. Gas plugging and gas channeling prevention technology for high temperature and high pressure wells in the periphery of Tahe Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(5):40-45. doi: 10.11911/syztjs.2018111
    [10] 方俊伟,苏晓明,熊汉桥,等. 塔中区块成膜封缝堵气钻井液体系[J]. 地质科技情报,2019,38(2):297-302. doi: 10.19509/j.cnki.dzkq.2019.0236

    FANG Junwei, SU Xiaoming, XIONG Hanqiao, et al. Film forming sealing and gas plugging drilling fluid system in Tazhong block[J]. Geological Science and Technology Information, 2019, 38(2):297-302. doi: 10.19509/j.cnki.dzkq.2019.0236
    [11] 王昌军,张春阳. PRD弱凝胶钻开液性能评价与试用效果[J]. 石油天然气学报,2008,30(6):143-145. doi: 10.3969/j.issn.1000-9752.2008.06.032

    WANG Changjun, ZHANG Chunyang. Performance evaluation and trial effect of PRD weak gel drilling fluid[J]. Journal of Petroleum and Natural Gas, 2008, 30(6):143-145. doi: 10.3969/j.issn.1000-9752.2008.06.032
    [12] 向雄,杨洪烈,刘喜亮,等. 南海西部超浅层气田水平井EZFLOW无固相弱凝胶钻井液研究与应用[J]. 石油钻探技术,2018,46(2):38-43. doi: 10.11911/syztjs.2018024

    XIANG Xiong, YANG Honglie, LIU Xiliang, et al. Research and application of EZFLOW solid free weak gel drilling fluid for horizontal wells in ultra shallow gas fields in the west of South China Sea[J]. Petroleum Drilling Techniques, 2018, 46(2):38-43. doi: 10.11911/syztjs.2018024
    [13] 马英文,刘小刚. 抗高温无固相储层保护钻井液体系[J]. 石油钻采工艺,2018,40(6):726-729. doi: 10.13639/j.odpt.2018.06.010

    MA Yingwen, LIU Xiaogang. High temperature resistant solid free reservoir protection drilling fluid system[J]. Oil Drilling & Production Technology, 2018, 40(6):726-729. doi: 10.13639/j.odpt.2018.06.010
    [14] 文飞,董殿彬,田玉龙,等. 抗高温无固相弱凝胶钻井完井液技术[J]. 钻井液与完井液,2016,33(4):36-40.

    WEN Fei, DONG Dianbin, TIAN Yulong, et al. High temperature resistant solid free weak gel drilling and completion fluid technology[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):36-40.
    [15] 许明标,马双政,韩金芳,等. 抗高温无固相弱凝胶钻井液体系研究[J]. 油田化学,2012,29(2):142-145. doi: 10.19346/j.cnki.1000-4092.2012.02.004

    XU Mingbiao, MA Shuangzheng, HAN Jinfang, et al. Study on high temperature resistant solid free weak gel drilling fluid system[J]. Oilfield Chemistry, 2012, 29(2):142-145. doi: 10.19346/j.cnki.1000-4092.2012.02.004
    [16] 卢明,王学良,王恩合,等. 提高水基钻井液高温稳定性的实验研究[J]. 钻井液与完井液,2013,30(1):17-21,90. doi: 10.3969/j.issn.1001-5620.2013.01.005

    LU Ming, WANG Xueliang, WANG Enhe, et al. Experimental study on improving the high temperature stability of water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(1):17-21,90. doi: 10.3969/j.issn.1001-5620.2013.01.005
    [17] 向朝纲,蒲晓林,冯宗伟. 抗高温环保型弱凝胶钻井液[J]. 钻井液与完井液,2012,29(2):15-17,90. doi: 10.3969/j.issn.1001-5620.2012.02.005

    XIANG Chaogang, PU Xiaolin, FENG Zongwei, et al. High temperature resistant and environmental friendly weak gel drilling fluid[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):15-17,90. doi: 10.3969/j.issn.1001-5620.2012.02.005
    [18] 于洪江,拓丹,熊迅宇. 成膜性纳米微乳液封堵剂的制备与评价[J]. 应用化工,2018,47(1):92-95. doi: 10.3969/j.issn.1671-3206.2018.01.023

    YU Hongjiang, TUO Dan, XIONG Xunyu, et al. Preparation and evaluation of film-forming nano lotion plugging agent[J]. Applied Chemical Industry, 2018, 47(1):92-95. doi: 10.3969/j.issn.1671-3206.2018.01.023
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  280
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-21
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回