Development and Field Application of a Drilling Fluid Intelligent Testing and Evaluating System
-
摘要: 钻探过程中钻井液性能的实时检测、数据云储、智能诊断、自动优化建议,是油气行业实现智能化、数字化转型的先决要素,为此研发出一套基于行业标准、现场施工要求、配合物联网及大数据平台相结合的钻井液智能检测系统。该系统可在常温~200 ℃,常压~8 MPa条件下进行24H*365D的全时段、全自动、不间断检测不同钻井液体系性能参数,测试范围包括钻井液温度、密度、流变参数、中压及高温高压滤失量参数和滤液离子参数的变化,并根据智能分析模块对钻井液的实时参数与设计参数进行对比分析,及时提供钻井液优化建议,保证井下施工安全。通过长期室内检测及现场多口试验井数千组实验对比数据得出,流变模块及滤失模块准确率97.3%,离子测试模块准确率96.2%,为安全、高效、智能的油气勘探开发前景提供了精确、稳定的数据保障。Abstract: Real-time testing, cloud store of data, intelligent diagnose and automatic optimization suggestion and the prerequisite for the oil and gas industry to achieve intelligent and digital transformation. To achieve the goal of transformation, a drilling fluid intelligent testing system has been developed on the bases of industrial standards, field operational requirements, and in connection with the internet of things (IoT) and big data platforms. This system can be used to fulltime test drilling fluid parameters automatically and continuously in 24 hours a day in 365 days at temperatures between room temperature and 200 ℃ and at pressures between atmospheric pressure and 8 MPa. Parameters tested include drilling fluid temperature, density, rheology, API and HTHP filter losses and changes in concentrations of various ions in the mud filtrates. Using the intelligent analysis module, the real-time parameters tested can be compared with the corresponding designed parameters, thereby helping present optimized drilling fluid treatment to guarantee the safety of downhole operations. Long-term laboratory test and thousand batches of experimental comparison data obtained from field application of the system on many wells indicated that the rheology measurement module and the filtration measurement module have an accuracy of 97.3%, the ion concentration measurement module has an accuracy of 96.2%. The successful application of the drilling fluid intelligent testing and evaluating system has provided an accurate and stable data guarantee for safe, efficient and intelligent oil and gas exploration.
-
表 1 钻井液智能检测系统主要技术指标参考
测试项目 测试范围及精度 测试标准 工作温度 室温~200 ℃,精度范围≤1 ℃ 密度测试 0~4 g/cm3,精度范围≤0.01 g/cm3 GB/T 16783.1—2014 流变性测试 静切力、动切力、塑性黏度、动塑比、n值、K值与手动检测差异≤5% GB/T 16783.1—2014 滤失压力 0~7.2 MPa(≤0.01MPa) GB/T 16783.1—2014 pH值及离子浓度测试 pH值、Cl−、Ca2+、K+、Mg2+准确率与手动检测差异≤5% GB/T 16783.1—2014 滤失量测试 API滤失量准确率与手动检测差异≤0.2 mL
HTHP滤失量准确率与手动检测差异≤0.1 mLGB/T 16783.1—2014 远程监控系统 依托内网服务器及手机APP端对现场数据进行检索、报表查看、实验条件调试等 云存储 现场采集的实验数据集中存储至云端,随时随地进行参数调取和对比 智能分析系统 导入云端数据库中井位所在区块设计参数、邻井复杂情况数据、现场实测数据进行参数对比并提供优化建议 拓展功能 审计追踪功能:记录设备操作详细信息、追溯如开机时间、登录名、测试项目等情况;电子签名功能:可防止非相关执行者误操作设备,保证设备人员安全 表 2 钻井液智能检测系统APP端及远程控制界面
井号 13# 层位 须家河组 G10 s/Pa 0.6 φ600 74.5 队号 ZY5115L 岩性 泥岩、沙岩 G10 min/Pa 4.10 φ300 42.1 开钻日期 2021年10月 工况 钻进 n 0.82 φ200 29.7 一开井深/m 150 ρ/(g·cm−3) 2.00 K 126.91 φ100 16.6 二开井深/m 1200 T/℃ 57.95 FL/mL 3.072 φ6 1.8 三开井深/m 4590 AV/(mPa·s) 37.26 pH 7.60 φ3 1.6 四开井深/m 6573 PV/(mPa·s) 32.40 Ca2+/(mg·L−1) 1745 检测人员 五开井深/m 6990 YP/Pa 4.86 Cl−/(mg·L−1) 75 610 检测时间 12/5 13:07 实际井深/m 2752 YP/PV/(Pa/mPa·s) 0.15 -
[1] FORBER D, LAW D, LEWIS A, et al. Evaluation of parameters affecting gas-in-mud quantification and their use in formation evaluation utilizing surface gas logging[J]. 24th International Meeting on Organic Geochemistry, 2018. [2] HAWKER D P. Direct gas in mud measurement at the wellsite[J]. Petroleum Engineer International, 1999, 72(9):123-127. [3] OSEH J O, MOHD N M N, GBADAMOSI A O, et al. Polymer nanocomposites application in drilling fluids: A review[J]. Geoenergy Science and Engineering, 2023(222):211416. [4] TAHR Z, ALI J A, MOHAMMED A S. Sustainable aspects behind nano-biodegradable drilling fluids: A critical review[J]. Geoenergy Science and Engineering, 2023, 222:211443. [5] JABERI J A, BAGERI B, ELKATATNY S, et al. Performance of Perlite as viscosifier in manganese tetroxide water based-drilling fluid[J]. Journal of Molecular Liquids, 2023, 374:121218. [6] PERRY S, MAHMUD S, CHEN Y H. Determination of absorption mass transfer coefficients of methane into drilling fluid base oils at elevated pressures[J]. Experimental Thermal and Fluid Science, 2023(144):110853. [7] DAI B M, XU P, XU M B, et al. Synthesis and plugging effect of inverse emulsion polymerization microspheres (OPME) for oil-based drilling fluids[J]. Arabian Journal of Chemistry, 2023, 16(4):104577. [8] ZHAO X, GENG Q, ZHANG Z, et al. Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs[J]. Energy, 2023, 263(Part B):125715. [9] LIU N P, GAO H, XU Y, et al. Design and use of an online drilling fluid pipe viscometer[J]. Flow Measurement and Instrumentation, 2022, 87:102224. [10] INDIMATH S, FIORENTINI S, BØKLEPP B R, et al. Optimization of pulsed-wave Doppler ultrasound for estimation of influx/efflux in oil and gas boreholes while drilling using conventional LWD transducers[J]. Journal of Petroleum Science and Engineering, 2022, 218:111000. [11] HU Y S, MU S Q, ZHANG J J, et al. Regional distribution, properties, treatment technologies, and resource utilization of oil-based drilling cuttings: A review[J]. Chemosphere, 2022(308):136145. [12] XU T T, WANG L A, ZHANG H J, et al. Pyrolysis kinetics and environmental risks of oil-based drill cuttings at China’s largest shale gas exploitation site[J]. Ecotoxicology and Environmental Safety, 2022(246):114189. -