Synthesis and Application of Polyether Fatty Acid Rheology Modifier for Oil-based Drilling Fluids
-
摘要: 针对油基钻井液切力低,易导致沉砂卡钻等严重问题的现状,合成了一种聚醚脂肪酸类油基钻井液用提切剂LQZ。利用红外光谱、热重曲线、凝胶强度和界面扩张流变参数等测试方法,分析了提切剂的结构、热稳定性、凝胶性能和作用机理,同时探究了基础油、油水比、密度和温度对其提切效果的影响。结果表明,该提切剂分子中含有羟基、酰胺基、酯基、醚键,能形成网架结构,提高悬浮能力,且具有快速弱凝胶特点;300 ℃无明显热分解;加量小于0.85%时有利于乳液稳定性;该提切剂对白油基、柴油基和合成基钻井液体系普遍适用,且白油基中效果最好;当钻井液油水比为8∶2、密度为2.1 g/cm3、190 ℃时提切效率最佳,动切力、φ6及φ3读数和静切力增长约1倍;与国外同类产品相比,LQZ具有提切不增塑性黏度的优势。LQZ在现场页岩油气井应用时,动切力、φ6及φ3读数和静切力基本增加100%,塑性黏度无明显增长。LQZ能够提高油基钻井液悬浮能力,不显著增加塑性黏度,具有很好的推广应用前景。Abstract: Oil-based drilling fluids have low gel strengths and pipe sticking by the settled drilled cuttings is easy to be encountered. A polyether fatty acid gelling agent LQZ has been developed to deal with this problem. The molecular structure, thermal stability, gelling property and emulsion stability of the synthesized LQZ were analyzed using IR spectroscopy, thermogravimetric curve, gel strength measurement and emulsion stability test. The effects of the base oil for formulating the mud, oil/water ratio, density and temperature on the gelling performance of the LQZ were investigated. It was found that in the LQZ molecules there are polar groups such as hydroxyl, amide and ether bond which can form network structures. The network structures render the LQZ a fast weak gelling characteristics. At 300 ℃, the LQZ has no obvious thermal decomposition. The LQZ is beneficial to the emulsion stability of the oil-based muds at a concentration of less than 0.85%. The LQZ can be used in various nonaqueous drilling fluids formulated with white oil, diesel oil or synthetic fluids, with white oil-based drilling fluids being the best environment for the LQZ. LQZ in an oil-based mud with oil/water ratio of 8∶2 and density of 2.1 g/cm3 has the optimum gelling capacity at 190 ℃, the yield point, the low shear rate, φ6 and φ3 reading and the gel strengths are all doubled. Compared with the similar products produced abroad, LQZ has the advantages of increasing gel strengths of a mud, without simultaneously increasing the plastic viscosity of the mud. In field operation, 1% LQZ in a white oil-based drilling fluid and in a diesel oil-based drilling fluid increased the gel strengths of the muds by more than twice, and the plastic viscosity was only slightly increased. The LQZ can be used to improve the suspending capacity of an oil-based drilling fluid.
-
Key words:
- Oil-based drilling fluids /
- Rheology modifier /
- Weak gel /
- Thixotropy /
- Plastic viscosity
-
表 1 0.5%LQZ对不同基础油基钻井液老化前后的提切效果 (150 ℃老化16 h)
基础油 测试条件 试样 开罐状态 AV/mPa·s PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) YP/PV/(Pa/mPa·s) ES/V 0#柴油 老化前 原浆 无沉 63.0 57.0 6.0 5.0/4.0 4.5/12.0 0.105 688 LQZ 无沉 63.5 55.0 8.5 9.0/8.0 7.0/12.0 0.155 713 老化后 原浆 无沉 76.0 65.0 11.0 12.0/11.0 8.0/19.5 0.169 987 LQZ 无沉 79.5 61.0 18.5 17.0/16.0 13.0/25.0 0.303 1064 3#白油 老化前 原浆 少量软沉 48.5 44.0 4.5 4.0/3.0 3.5/5.0 0.102 684 LQZ 无沉 51.0 44.0 7.0 8.0/7.0 5.0/6.5 0.159 698 老化后 原浆 少量软沉 78.5 71.0 7.5 13.0/12.0 8.0/12.0 0.106 805 LQZ 无沉 80.5 60.0 20.5 22.0/21.0 13.5/17.0 0.342 998 110#
合成油老化前 原浆 少量软沉 44.5 40.0 4.5 4.0/3.0 3.0/6.0 0.113 432 LQZ 无沉 46.5 40.0 6.5 5.0/4.0 4.0/7.0 0.163 517 老化后 原浆 少量软沉 57.0 51.0 6.0 6.0/5.0 6.0/12.0 0.117 755 LQZ 无沉 64.5 51.0 13.5 9.0/8.0 8.0/18.0 0.265 882 表 2 0.5%LQZ对不同油水比油基钻井液老化前后的提切效果 (150 ℃老化16 h)
油水比 测试条件 试样 开罐状态 AV/mPa·s PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) YP/PV/(Pa/mPa·s) ES/V 9:1 老化前 原浆 少量软沉 34.0 32.0 2.0 2.0/1.0 1.0/1.0 0.063 1298 LQZ 无沉降 36.5 32.0 4.5 3.0/2.0 2.0/3.0 0.141 1685 老化后 原浆 较多软沉 42.5 39.0 3.5 4.0/3.0 3.5/5.5 0.090 1617 LQZ 无沉降 39.0 33.0 6.0 5.0/4.0 4.5/8.5 0.182 1350 8:2 老化前 原浆 少量软沉 48.5 44.0 4.5 4.0/3.0 3.5/5.0 0.102 684 LQZ 无沉 51.0 44.0 7.0 8.0/7.0 5.0/6.5 0.159 698 老化后 原浆 少量软沉 78.5 71.0 7.5 13.0/12.0 8.0/12.0 0.106 805 LQZ 无沉 80.5 60.0 20.5 22.0/21.0 13.5/17.0 0.342 998 7:3 老化前 原浆 极少软沉 58.0 53.0 5.0 4.0/3.0 4.5/6.0 0.094 579 LQZ 无沉 63.0 53.0 10.0 9.0/8.0 6.5/8.5 0.189 616 老化后 原浆 无沉 118.5 93.0 25.5 25.0/22.0 15.0/21.5 0.274 657 LQZ 无沉 124.5 90.0 34.5 30.0/28.0 19.0/24.0 0.383 727 表 3 0.5%LQZ对不同密度油基钻井液老化前后的提切效果(150 ℃老化16 h)
ρ/(g·cm−3) 测试条件 试样 开罐状态 PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) YP/PV/(Pa/mPa·s) 1.5 老化前 原浆 无沉 18.0 1.0 1.0/0.0 0.0/0.5 0.056 LQZ 无沉 16.0 2.0 1.0/1.0 1.0/0.5 0.125 老化后 原浆 无沉 25.0 3.0 3.0/2.0 3.0/5.5 0.120 LQZ 无沉 23.0 4.5 5.0/4.0 4.5/7.5 0.196 1.8 老化前 原浆 无沉 23.0 1.5 1.0/1.0 1.0/1.5 0.065 LQZ 无沉 23.0 2.0 4.0/3.0 4.0/3.0 0.087 老化后 原浆 无沉 43.0 5.5 6.0/5.0 6.0/11.0 0.128 LQZ 无沉 34.0 11.5 12.0/11.0 8.0/14.5 0.338 2.1 老化前 原浆 少量软沉 44.0 4.5 4.0/3.0 3.5/5.0 0.102 LQZ 无沉 44.0 7.0 8.0/7.0 5.0/6.5 0.159 老化后 原浆 少量软沉 71.0 7.5 13.0/12.0 8.0/12.0 0.106 LQZ 无沉 60.0 20.5 22.0/21.0 13.5/17.0 0.342 2.4 老化前 原浆 少量硬沉 85.0 4.0 4.0/2.0 2.0/3.0 0.047 LQZ 无沉 68.0 12.5 12.0/10.0 7.5/10.0 0.184 老化后 原浆 较多硬沉 98.0 23.0 23.0/22.0 18.5/23.5 0.235 LQZ 无沉 84.0 28.0 34.0/33.0 19.0/27.0 0.333 表 4 加入0.5%LQZ前后白油基钻井液在不同温度老化16 h后的性能
测试条件 试样 开罐状态 PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) YP/PV/(Pa/mPa·s) ES/V 老化前 原浆 少量软沉 44.0 4.5 4.0/3.0 3.5/5.0 0.102 684 LQZ 无沉 44.0 7.0 8.0/7.0 5.0/6.5 0.159 698 150 ℃、16 h 原浆 少量软沉 71.0 7.5 13.0/12.0 8.0/12.0 0.106 805 LQZ 无沉 60.0 20.5 22.0/21.0 13.5/17.0 0.342 998 170 ℃、16 h 原浆 少量软沉 65.0 11.0 15.0/14.0 9.0/16.0 0.169 930 LQZ 无沉 59.0 19.0 26.0/24.0 14.0/22.0 0.322 950 190 ℃、16 h 原浆 少量软沉 58.0 14.5 11.0/10.0 8.0/16.0 0.250 1120 LQZ 无沉 55.0 26.0 25.0/23.0 15.0/23.0 0.473 914 210 ℃、16 h 原浆 较多软沉 50.0 8.5 12.0/11.0 9.5/14.5 0.170 710 LQZ 无沉 55.0 12.5 18.0/18.0 11.5/16.0 0.227 913 230 ℃、16 h 原浆 较多硬沉 47.0 8.0 9.0/8.0 8.5/13.5 0.170 677 LQZ 少量软沉 52.0 11.5 13.0/12.0 10.0/17.0 0.221 820 表 5 LQZ在红页4HF井柴油基钻井液中的应用效果
井深/m ρ/(g·cm−3) PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) YP/PV/(Pa/mPa·s) ES/V FLHTHP/mL LQZ/% 4254 1.27 27.0 4.0 3.0/2.0 3.0/7.0 0.148 588 1.2 0 4317 1.28 25.0 7.5 6.0/5.0 5.5/11.5 0.300 865 1.2 0.5 4401 1.30 26.0 8.0 6.5/6.0 6.0/11.0 0.308 912 1.2 0.5 4511 1.31 24.0 7.0 7.0/6.0 6.0/12.0 0.292 1047 1.0 0.5 4816 1.33 24.5 7.5 6.0/5.0 6.5/12.0 0.306 896 1.0 0.5 5127 1.32 25.0 7.0 7.0/6.0 6.5/12.0 0.280 989 1.2 0.5 5339 1.32 27.5 8.5 8.0/7.0 6.0/12.0 0.309 962 1.0 0.5 5541 1.31 25.0 8.0 7.0/6.0 6.5/12.0 0.320 865 1.0 0.5 6205 1.31 24.0 7.5 6.0/5.0 7.0/14.0 0.313 1102 1.2 0.5 7013 1.31 24.0 8.0 7.0/6.0 6.5/13.0 0.333 947 1.2 0.5 注:井浆配方为柴油+(2.5%~3%)主乳化剂+(1.5%~2%)辅乳化剂+(1%~1.5%)润湿剂+(1.5%~2%)有机土+(2.5%~3%)CaO+(2.5%~3%)降滤失剂+(1.5%~2%)封堵剂+质量分数为25%的CaCl2盐水+重晶石,油水比(80~90)∶(20~10);FLHTHP在120 ℃下测定,其他参数在65 ℃下测定。 表 6 LQZ在花页1-1HF井白油基钻井液中的应用效果
井深/m ρ/(g·cm−3) PV/mPa·s YP/Pa φ6/φ3 Gel/(Pa/Pa) YP/PV/(Pa/mPa·s) ES/V FLHTHP/mL 取样 3935 1.36 32.0 3.5 3.0/2.0 1.5/3.5 0.109 867 2.0 原浆 4155 1.40 37.0 4.5 3.0/2.0 2.0/5.0 0.122 918 1.8 +0.5%有机土 4297 1.39 35.0 8.0 6.0/5.0 4.0/9.0 0.229 1156 2.0 +0.5%LQZ 5116 1.41 38.0 13.0 12.0/11.0 9.0/20.0 0.342 1224 1.8 +0.5%LQZ 注:井浆配方为白油+3%主乳化剂+1.5%辅乳化剂+(0.7%~1.5%)有机土+(3%~4%)CaO+(1%~2%)降滤失剂+(1%~2%)封堵剂+质量分数为25%的CaCl2盐水+重晶石,油水比(80~90)∶(20~10);FLHTHP在130 ℃下测定,其他参数在65 ℃下测定。 -
[1] 王晓军,李俊杞,孙云超,等. 强抑制水基钻井液在连续管侧钻井中的应用[J]. 石油钻采工艺,2018,40(1):33-39. doi: 10.13639/j.odpt.2018.01.006WANG Xiaojun, LI Junqi, SUN Yunchao, et al. Application of strong-inhibition water based drilling fluid to side tracking of coiled tubing[J]. Oil Drilling & Production Technology, 2018, 40(1):33-39. doi: 10.13639/j.odpt.2018.01.006 [2] 黄贤斌. 抗高温高性能无土相钻井液技术研究[D]. 北京: 中国石油大学(北京), 2019: 10-12.HUANG Xianbin. High-temperature high-performance organoclay-free oil based drilling fluid technology research[D]. Beijing: China University of Petroleum (Beijing), 2019: 10-12. [3] 彭浩. 油基合成基钻井液用提切剂的研制及性能评价[D]. 北京: 中国石油大学(北京), 2020: 1-3.PENG Hao. Development and performance evaluation of cutting agent for oil-based and synthetic-based fluids[D]. Beijing: China University of Petroleum (Beijing), 2020: 1-3. [4] 张桓,罗春芝,张世录,等. 抗温抗污染油基钻井液乳化剂的研制及在阳101区块的应用[J]. 钻采工艺,2022,45(6):146-151.ZHANG Huan, LUO Chunzhi, ZHANG Shilu, et al. Development of anti-temperature and anti-pollution emulsifier for oil-based drilling fluid and its application in Yang101 Block[J]. Drilling & Production Technology, 2022, 45(6):146-151. [5] 蒋官澄,贺垠博,黄贤斌,等. 基于超分子技术的高密度无黏土油基钻井液体系[J]. 石油勘探与发,2016,43(1):131-135. doi: 10.1016/S1876-3804(16)30015-5JIANG Guancheng, HE Yinbo, HUANG Xianbin, et al. A high-density organoclay-free oil base drilling fluid based on supramolecular chemistry[J]. Petroleum Exploration and Development, 2016, 43(1):131-135. doi: 10.1016/S1876-3804(16)30015-5 [6] JAIN R, MAHTO V. Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water-based drilling fluid system[J]. Journal of Petroleum Science and Engineering, 2015, 133:612-621. doi: 10.1016/j.petrol.2015.07.009 [7] 黄宁,吕开河,孙金声,等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405.HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405. [8] 孙金声,黄贤斌,蒋官澄,等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718. doi: 10.11698/PED.2018.04.17SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):713-718. doi: 10.11698/PED.2018.04.17 [9] 倪晓骁,史赫,程荣超,等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.NI Xiaoxiao, SHE He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138. [10] 杨斌. 油基钻井液稳黏提切剂的研制及应用[J]. 钻采工艺,2019,42(1):80-82. doi: 10.3969/J.ISSN.1006-768X.2019.01.24YANG Bin. Development of rheology modifier for oil based drilling fluid[J]. Drilling & Production Technology, 2019, 42(1):80-82. doi: 10.3969/J.ISSN.1006-768X.2019.01.24 [11] VASCONCELOS A N, PAIXÃO M V G, DO NASCIMENTO MARQUES N, et al. Dimer fatty acid and fatty amide effects on the properties of synthetic-based drilling fluids[J]. Journal of Molecular Liquids, 2022, 359:119270. doi: 10.1016/j.molliq.2022.119270 [12] 崔茂荣,马勇. 钻井液触变性评价方法的合理性探索[J]. 钻井液与完井液,2006,23(1):24-26. doi: 10.3969/j.issn.1001-5620.2006.01.006CUI Maorong, MA Yong. Rationality of evaluation method for thixotropy of drilling fluid[J]. Drilling Fluid & Completion Fluid, 2006, 23(1):24-26. doi: 10.3969/j.issn.1001-5620.2006.01.006 [13] 鄢捷年. 钻井液工艺学(修订版)[M]. 东营: 中国石油大学出版社, 2012: 66-68.YAN Jienian. Drilling fluid technology (revision)[M]. Dongying: China University of Petroleum Press, 2012: 66-68. [14] 赵濉,郭朝阳,刘苗,等. 甜菜碱与油酸混合吸附膜的界面扩张流变性质[J]. 天津工业大学学报,2020,39(5):50-55. doi: 10.3969/j.issn.1671-024x.2020.05.008ZHAO Sui, GUO Zhaoyang, LIU Miao, et al. Interfacial dilational rheological properties of mixed adsorption film formed by betaine and oleic acid[J]. Journal of Tianjin Polytechnic University, 2020, 39(5):50-55. doi: 10.3969/j.issn.1671-024x.2020.05.008 [15] 曹绪龙, 张路, 祝仰文, 等. 表面活性剂溶液的界面扩张流变学[M]. 北京: 科学出版社, 2021, 1-4.CAO Xulong, ZHANG Lu, ZHU Yangwen, et al. Inerfacial dilational rheology of surfactant solution[M]. Beijing: Science Press, 2021, 1-4. [16] 曹绪龙,李阳,蒋生祥,等. 驱油用聚丙烯酰胺溶液的界面扩张流变特征研究[J]. 石油大学学报(自然科学版),2005,29(2):70-72.CAO Xulong, LI Yang, JIANG Shengxiang, et al. Dilational rheological properties of polyacrylamide solutions at interfaces[J]. Journal of the University of Petroleum (Natural Science Edition) , 2005, 29(2):70-72. [17] 江琴,陆紫灵,张磊,等. 支链烷基苯磺酸钠溶液界面扩张流变性质研究[J]. 武汉理工大学学报,2022,44(2):15-20. doi: 10.3963/j.issn.1671-4431.2022.02.003JIANG Qin, LU Ziling, ZHANG Lie, et al. study on interfacial dilational rheological properties of sodium branched-alkyl benzene sulfonate solutions[J]. Journal of Wuhan University of Technology, 2022, 44(2):15-20. doi: 10.3963/j.issn.1671-4431.2022.02.003 -