留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩容强度准则的硬脆性泥岩坍塌压力计算模型

幸雪松 蔚宝华 王恒阳 武治强 庞照宇

幸雪松,蔚宝华,王恒阳,等. 基于扩容强度准则的硬脆性泥岩坍塌压力计算模型[J]. 钻井液与完井液,2023,40(3):296-302 doi: 10.12358/j.issn.1001-5620.2023.03.003
引用本文: 幸雪松,蔚宝华,王恒阳,等. 基于扩容强度准则的硬脆性泥岩坍塌压力计算模型[J]. 钻井液与完井液,2023,40(3):296-302 doi: 10.12358/j.issn.1001-5620.2023.03.003
XING Xuesong, YU Baohua, WANG Hengyang, et al.A model for hard brittle mudstone collapse pressure computation based on rock dilation strength criteria[J]. Drilling Fluid & Completion Fluid,2023, 40(3):296-302 doi: 10.12358/j.issn.1001-5620.2023.03.003
Citation: XING Xuesong, YU Baohua, WANG Hengyang, et al.A model for hard brittle mudstone collapse pressure computation based on rock dilation strength criteria[J]. Drilling Fluid & Completion Fluid,2023, 40(3):296-302 doi: 10.12358/j.issn.1001-5620.2023.03.003

基于扩容强度准则的硬脆性泥岩坍塌压力计算模型

doi: 10.12358/j.issn.1001-5620.2023.03.003
详细信息
    作者简介:

    幸雪松,高级工程师,1978年生,2004年毕业于长江大学油气井工程专业获硕士学位,现在从事钻井工程技术工作。E-mail:xingxs@cnooc.com.cn/yubaohua73@126.com

  • 中图分类号: TE21; TE254.3

A Model for Hard Brittle Mudstone Collapse Pressure Computation Based on Rock Dilation Strength Criteria

  • 摘要: 在低围压下,硬脆性泥岩在应力状态达到峰值强度前易发生扩容,当应力状态超过扩容强度后,钻井液水化作用对岩石强度的削弱增快增大,引起井壁坍塌,需制定合理的钻井液密度保持井壁稳定性。采用实验研究和理论分析相结合的方法,对硬脆性泥岩组构特征、水理性质、变形规律、强度准则和预应力后的浸泡钻井液强度变化规律进行研究,推导了基于扩容强度准则的硬脆性泥岩的井壁坍塌压力计算模型和参数计算方法,并进行了实例分析。结果表明,钻井液密度高于以峰值强度为准则计算的坍塌压力,低于以扩容强度为准则的坍塌压力,导致井周地层进入扩容状态,井周地层产生应力诱导微裂隙,激发了钻井液水化作用是井壁坍塌的根源。以扩容强度为准则确定坍塌压力,制定钻井液密度更加合理。

     

  • 图  1  鄂尔多斯盆地双石层硬脆性泥岩岩样电镜扫描下的微观结构特征 

    图  2  不同围压下应力-轴向应变实验曲线

    图  3  不同围压下应力-体积应变实验曲线

    图  4  岩心在不同围压下的破坏形式

    图  5  围压与岩石峰值强度和扩容强度的关系

    图  6  不同预应力作用后岩心强度随浸泡钻井液时间的变化规律  

    图  7  泥岩弹性模量与扩容强度关系

    图  8  X井地层强度参数、坍塌压力及井径剖面

  • [1] BRADLEY W B. Mathematical concept-stress cloud-can predict borehole failure[J]. Oil Gas J. ;(United States), 1979, 77:88-92.
    [2] AADNOY B S, CHENEVERT M E. Stability of highly inclined boreholes (includes associated papers 18596 and 18736)[J]. SPE Drilling Engineering, 1987, 2(4):364-374. doi: 10.2118/16052-PA
    [3] YEW C H, LIU G. Pore fluid and wellbore stabilities[C]//International Meeting on Petroleum Engineering. Society of Petroleum Engineers, 1992.
    [4] BAI M, ABOUSLEIMAN Y. Thermoporoelastic coupling with application to consolidation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2):121-132. doi: 10.1002/(SICI)1096-9853(199702)21:2<121::AID-NAG861>3.0.CO;2-W
    [5] WANG Y, DUSSEAULT M B. A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability[J]. Journal of Petroleum Science and Engineering, 2003, 38(3):187-198.
    [6] CHENEVERT M E. Shale alteration by water adsorption[J]. Journal of Petroleum Technology, 1970, 22(9):1,141-1,148. doi: 10.2118/2401-PA
    [7] HALE A H, MODY F K, SALLSBURY D P. The influence of chemical potential on wellbore stability[J]. SPE Drilling & Completion, 1993, 8(3):207-216.
    [8] VAN OORT E. Physico-chemical stabilization of shales[C]//SPE international symposium on oilfield chemistry. 1997: 523-538.
    [9] VAN OORT E. Physico-chemical stabilization of shales[C]//SPE international symposium on oilfield chemistry. 1997: 523-538.
    [10] CHOI S K, TA C P, FREIJ-AYOU R. A Coupled mechanical-thermal-physico-chemical model for the study of time-dependent wellbore stability in shales[J]. Elsevier Geo-Engineering Book Series, 2004, 2:581-586.
    [11] CHEN G, CHENEVERT M E, SHARMA M M, et al. A study of wellbore stability in shales including poroelastic, chemical, and thermal effects[J]. Journal of Petroleum Science and Engineering, 2003, 38(3):167-176.
    [12] ZHOU X, GHASSEMI A. Finite element analysis of coupled chemo-poro-thermo-mechanical effects around a wellbore in swelling shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4):769-778. doi: 10.1016/j.ijrmms.2008.11.009
    [13] CHAI Z Y, KANG T H, FENG G R. Effect of aqueous solution chemistry on the swelling of clayey rock[J]. Applied Clay Science, 2014, 93:12-16.
    [14] KAARSBERG E A. Introductory studies of natural and artificial argillaceous aggregates by sound-propagation and X-ray diffraction methods[J]. The Journal of Geology, 1959, 67(4):447-472. doi: 10.1086/626597
    [15] JOHNSTON J E, CHRISTENSEN N I. Seismic anisotropy of shales[J]. Journal of Geophysical Research, 1995, 100(B4):5991-6003. doi: 10.1029/95JB00031
  • 加载中
图(8)
计量
  • 文章访问数:  678
  • HTML全文浏览量:  272
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回