留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丁腈橡胶颗粒油井水泥石抗冲击力学性能与损伤特征

孙夏兰 任强 吴坷 黄坤 梅开元 张高寅 程小伟

孙夏兰,任强,吴坷,等. 丁腈橡胶颗粒油井水泥石抗冲击力学性能与损伤特征[J]. 钻井液与完井液,2023,40(2):241-250, 258 doi: 10.12358/j.issn.1001-5620.2023.02.013
引用本文: 孙夏兰,任强,吴坷,等. 丁腈橡胶颗粒油井水泥石抗冲击力学性能与损伤特征[J]. 钻井液与完井液,2023,40(2):241-250, 258 doi: 10.12358/j.issn.1001-5620.2023.02.013
SUN Xialan, REN Qiang, WU Ke, et al.Impact resistance mechanical properties and damage characteristics of set cement containing nitril rubber powders[J]. Drilling Fluid & Completion Fluid,2023, 40(2):241-250, 258 doi: 10.12358/j.issn.1001-5620.2023.02.013
Citation: SUN Xialan, REN Qiang, WU Ke, et al.Impact resistance mechanical properties and damage characteristics of set cement containing nitril rubber powders[J]. Drilling Fluid & Completion Fluid,2023, 40(2):241-250, 258 doi: 10.12358/j.issn.1001-5620.2023.02.013

丁腈橡胶颗粒油井水泥石抗冲击力学性能与损伤特征

doi: 10.12358/j.issn.1001-5620.2023.02.013
基金项目: 四川省区域创新合作项目“页岩气水平井固井用原位增韧水泥研究与应用”(2021YFQ0045)
详细信息
    作者简介:

    孙夏兰,在读硕士研究生,1998年生,就读于西南石油大学材料科学与工程专业,主要从事油气井水泥力学性能方面的研究。电话17790194532;E-mail:sunxialancn@163.com

    通讯作者:

    程小伟,教授,博士生导师,1977年生,主要从事复杂工况下水泥石胶结与力学完整性研究以及有机/无机改性材料在固井工程应用等方面的研究工作。E-mail:chengxw@swpu.edu.cn

  • 中图分类号: TE256

Impact Resistance Mechanical Properties and Damage Characteristics of Set Cement Containing Nitril Rubber Powders

  • 摘要: 油井水泥是一种典型的脆性材料,提高水泥环韧性和降低水泥环脆性是目前的研究热点,在保证油气井安全生产的前提下还能延长油气井使用寿命。该研究将球形丁腈橡胶颗粒(Microsphere nitrile Rubber Powder,MRP)与不规则丁腈橡胶颗粒(Nitrile Rubber Powder,NRP)分别加入到油井水泥中,探讨其抗冲击力学性能与损伤特征。采用直径为50 mm的分离式霍普金森压杆(Split Hopkinson Pressure Bar-SHPB)设备测试了不同体系水泥石的动态抗冲击性能,讨论了动态抗压强度、能量演化、损伤特征的变化规律。球形丁腈橡胶颗粒加量为6%的油井水泥石试样动态抗压强度可达(64.0±1.6) MPa,试样吸收能为39.93 J,吸能率可达49.91%;不规则丁腈橡胶颗粒加量为6%的油井水泥石试样动态抗压强度为(74.1±1.8) MPa,试样吸收能为46.56 J,吸能率可达58.20%。通过高速摄影和微观形貌发现,不规则丁腈橡胶颗粒与水泥基体间结合更加紧密,通过裂纹偏转机制提高阻裂能力,利于延长试样承载时间,加大载荷能量的消耗。

     

  • 图  1  不同橡胶颗粒粒径分布

    图  2  不同形态丁腈橡胶颗粒表面SEM图像

    图  3  不同试样制样过程

    图  4  霍普金森压杆装置图(SHPB)

    图  5  不同水泥石试样SHPB测试特征信号

    图  6  不同水泥石试样SHPB电压平衡曲线

    图  7  不同水泥石试样的冲击载荷峰值强度柱状图

    图  8  不同掺量橡胶颗粒水泥石试样动态强度-应变曲线

    图  9  不同掺量橡胶颗粒水泥石试样的时间-能量曲线

    图  10  Control试样的裂纹扩展及试样冲击前后对比

    图  11  MRP-6%试样的裂纹扩展及试样冲击前后对比

    图  12  NRP-6%试样的裂纹扩展及试样冲击前后对比

    图  13  不同橡胶颗粒水泥石试样的断口  微观形貌及环形试样损伤情况

    表  1  不同水泥石试样SHPB测试能量特征数据

    试样
    编号
    入射能/
    J
    反射能/
    J
    透射能/
    J
    吸收能/
    J
    吸能率/
    %
    峰值强度/
    MPa
    Control8036.3235.947.749. 6819.3±1.5
    MRP-2%8031.0820.7028.2235.2842.1±2.7
    MRP-4%8029.5018.4532.0540.0653.7±2.0
    MRP-6%8026.3913.6839.9349.9164.0±1.6
    MRP-8%8028.9216.8434.2442.8057.5±2.0
    NRP-2%8029.0223.6427.3434.1846.0±2.5
    NRP-4%8026.9513.0739.9849.9863.7±2.0
    NRP-6%8024.498.9546.5658.2074.1±1.8
    NRP-8%8026.1711.5842.2552.8166.6±2.1
    下载: 导出CSV
  • [1] DENG K H, LIU W Y, XIA T G, et al. Experimental study the collapse failure mechanism of cemented casing under non-uniform load[J]. Engineering Failure Analysis, 2017, 73:1-10. doi: 10.1016/j.engfailanal.2016.12.002
    [2] WANG W, TALEGHANI A D. Three-dimensional analysis of cement sheath integrity around wellbores[J]. Journal of Petroleum Science and Engineering, 2014, 121:38-51. doi: 10.1016/j.petrol.2014.05.024
    [3] XI Y, LI J, LIU G H, et al. A new numerical investigation of cement sheath integrity during multistage hydraulic fracturing shale gas wells[J]. Journal of Natural Gas Science and Engineering, 2018, 49:331-341. doi: 10.1016/j.jngse.2017.11.027
    [4] 程小伟,秦丹,赵殊勋,等. 动态冲击下纤维素固井水泥石力学性能及增韧机理研究[J]. 硅酸盐通报,2019,38(6):1918-1922,1928.

    CHENG X W, QIN D, ZHAO S X, et al. Mechanical properties and toughening mechanism of cellulose cement under dynamic impact[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6):1918-1922,1928.
    [5] ZHANG W G, ZHANG Y L, LIU B C. Hybrid effect of basalt fiber and carbon fiber on the mechanical properties and microstructure of oil well cement[J]. Construction and Building Materials, 2021, 286:12269.
    [6] CHENG X W, HUANG S, GUO X Y, et al. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement[J]. Applied Surface Science, 2017, 409(1):325-342.
    [7] 王秀玲,任文亮,周战云,等. 储气库固井用油井水泥增韧材料的优选与应用[J]. 钻井液与完井液,2017,34(03):89-93,98. doi: 10.3969/j.issn.1001-5620.2017.03.018

    WANG X L, REN W L, ZHOU Z Y, et al. Selection and application of toughening agent used in cementing gas storage well[J]. Drilling Fluid & Completion Fluid, 2017, 34(03):89-93,98. doi: 10.3969/j.issn.1001-5620.2017.03.018
    [8] 何智海,李增,詹培敏,等. 橡胶粉对水泥基材料性能影响的研究进展[J]. 混凝土,2020(6):73-78. doi: 10.3969/j.issn.1002-3550.2020.06.017

    HE Z H, Ll Z, ZHAN P M, et al. Research progress of effect of rubber powder on the properties of cement-based materials[J]. Concrete, 2020(6):73-78. doi: 10.3969/j.issn.1002-3550.2020.06.017
    [9] 陈胜霞,张亚梅,罗天岚,等. 橡胶颗粒细度、掺量及成型工艺对橡胶混凝土抗冻性能的影响[J]. 工业建筑,2020,43(6):73-78.

    CHEN S X, ZHANG Y M, LUO T L, et al. Influenceofrubber fineness, content and casting method on frostresistance of recycled rubber concrete[J]. Industrial Construction, 2020, 43(6):73-78.
    [10] 龙丹,程小伟,时宇,等. 微细橡胶粉对油井水泥基复合材料性能的影响[J]. 硅酸盐通报,2015,34(9):2629-2633,2638.

    LONG D, CHENG X W, SHI Y, et al. Properties of oil well cement-based composite with minute rubber powder[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9):2629-2633,2638.
    [11] 李进,龚宁,李早元,等. 射孔完井工况下固井水泥环破坏研究进展[J]. 钻井液与完井液,2016,33(6):10-16. doi: 10.3969/j.issn.1001-5620.2016.06.002

    LI J, GONG N, LI Z Y, et al. Progress in studying cement sheath failure in perforated wells[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):10-16. doi: 10.3969/j.issn.1001-5620.2016.06.002
    [12] CHENG X W, LIU K Q, ZHANG Y G, et al. Integrity changes of cement sheath due to contamination by drilling fluid[J]. Advances in Cement Research, 2018, 30(2):47-55. doi: 10.1680/jadcr.16.00121
    [13] 闫炎,管志川,阎卫军,等. 射孔过程中井筒力学响应与完整性失效研究[J]. 石油机械,2022,50(7):1-9. doi: 10.16082/j.cnki.issn.1001-4578.2022.07.001

    YAN Y, GUAN Z C, YAN W J, et al. Mechanical response and integrity failure of wellbore during perforation[J]. China Petroleum Machinery, 2022, 50(7):1-9. doi: 10.16082/j.cnki.issn.1001-4578.2022.07.001
    [14] SHIYAN S I, SHUTOV D V, FESENKO M Y, et al. Application of drilling oscillator during drilling directional wells in the field conditions of gubkinskoye oil and gas field while drilling No. 2156[J]. IOP Conference Series:Earth and Environmental Science, 2021, 720:012071. doi: 10.1088/1755-1315/720/1/012071
    [15] DENG Q, ZHANG H, CHEN A M, et al. Effects of perforation fluid movement on downhole packer with shock loads[J]. Journal of Petroleum Science and Engineering, 2020, 195:107566. doi: 10.1016/j.petrol.2020.107566
    [16] American Petroleum Institute (API), API 10B-2, Recommended prectice for testing well cements, Second Edition, 2013.
    [17] LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests[J]. Rock Mechanics and Rock Engineering, 2019, 52(6):1623-1643. doi: 10.1007/s00603-018-1652-5
    [18] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1):21-39. doi: 10.1007/s00603-004-0030-7
    [19] LUO L, LI X B, TAO M, et al. Mechanical behavior of rock-shotcrete interface under static and dynamic tensile loads[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2017, 65:215-224.
    [20] HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses[J]. International Journal of Rock Mechanics and Mining Sciences, 2020:131.
    [21] HAN Z Y, LI D Y, ZHU Q Q, et al. Dynamic fracture evolution and mechanical behavior of sandstone containing noncoplanar elliptical flaws under impact loading[J]. Advances in Civil Engineering, 2018, 2018(10):5649357.
    [22] GUO Y B, GAO G F, JING L, et al. Response of high-strength concrete to dynamic compressive loading[J]. International Journal of Impact Engineering, 2017, 108:114-135. doi: 10.1016/j.ijimpeng.2017.04.015
    [23] LIU P, HU D, WU Q K, et al. Sensitivity and uncertainty analysis of interfacial effect in SHPB tests for concrete-like materials[J]. Construction and Building Materials, 2018, 163:414-427. doi: 10.1016/j.conbuildmat.2017.12.118
    [24] LI J, ZHAO J, GONG S Y, et al. Mechanical anisotropy of coal under coupled biaxial static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 143:104807. doi: 10.1016/j.ijrmms.2021.104807
    [25] CHENG X W, QIN D, CHEN Z W, et al. Mechanical response and crack propagation of oil well cement under dynamic and static loads[J]. Journal of Adhesion Science and Technology, 2019, 33(15):1658-1675. doi: 10.1080/01694243.2019.1610203
    [26] XIE Y J, FU Q, ZHENG K R, et al. Dynamic mechanical properties of cement and asphalt mortar based on SHPB test[J]. Construction and Building Materials, 2014, 70:217-225. doi: 10.1016/j.conbuildmat.2014.07.092
    [27] WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened brazilian disc of rock with SHPB setup[J]. Mechanics of Materials, 2008, 41(3):252-260.
    [28] WANG S, LE H, POH L H, et al. Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete[J]. Construction and Building Materials, 2016, 136:31-43.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  199
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 修回日期:  2023-01-17
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回