Ultra-High Density Drilling Fluid Technology for the Well Hetan-1
-
摘要: 河探1井是中油股份公司在华北油田河套盆地临河坳陷部署的一口重点风险探井,完钻井深为6460.44 m,钻探目的为探索兴隆构造带光明背斜古近系、新近系生储盖特征及其含油气性。该井三开钻遇四套不同压力系数复杂地层,钻井液密度窗口窄,现场顺利实施了提密度压井、堵漏,控压钻进等作业,四开钻遇异常高压流体层,应用超高密度钻井液体系一次性将钻井液密度从1.80 g/cm3提高至2.55 g/cm3,并安全实施完井作业,储备压井高密度钻井液(ρ=2.60 g/cm3),达到国内应用水基钻井液采用重晶石粉加重的极限。在钻井施工过程中先后出现井塌、膏泥岩层蠕变缩径卡钻、高压盐水侵以及井漏等事故复杂,采用超高密度抗高温复合盐钻井液,现场应用随钻封堵提高地层承压能力工艺,分段完成七次承压堵漏,同时强化一级固控有效使用,应用高目筛布、优化钻井液体系配方、优选加重材料、调节膨润土含量及合理控制低密度固相含量等手段,成功解决了窄密度窗口和超高密度水基钻井液高温、高固相流变性能调整困难等技术难题,确保了压井和试油作业期间高温条件下超高密度钻井液体系具有良好的稳定性。该井创地区同期六项钻井技术指标,日产302.4 m3高产工业油流,实现巴彦油田最深井勘探发现,为钻井及完井试油作业提供了技术支撑。Abstract: The well Hetan-1 is a key exploratory well drilled by CNPC at the Linhe depression in the Hetao basin in Huabei oilfield. The completion depth of this well is 6,460.44 m and was drilled to explore the reservoir characteristics of the Paleogene and the Neogene systems in the Guangming anticline in the Xinglong tectonic belt. The third interval of this well penetrated formations of four different formation pressure coefficients, and the safe drilling windows of the formations are narrow. Killing the well by raising mud weight, controlling mud losses and drilling with managed pressure were used in drilling this interval. When drilling into the formation with ultra-high pressure fluids, the mud density was increased in one step from 1.80 g/cm3 to 2.55 g/cm3, and the well was successfully completed. The kill mud stored at the rig site had a density of 2.60 g/cm3, a density limit of water based drilling fluids weighted with barite. Several downhole troubles were encountered during drilling, such as borehole collapse, pipe sticking because of creeping tight hole in mudstone formations containing gypsum, high pressure saltwater invasion as well as mud losses. The interval was drilled with a high temperature ultra-high density compound saltwater drilling fluid, and controlling mud losses while drilling technique was used seven times to enhance the pressure bearing capacity of the formations. During drilling, finer screens were used on shale shakers for better solids control, the drilling fluid was continually optimized for its composition, the weighting materials were carefully selected, the content of bentonite in the mud was adjusted to satisfy the needs of stabilizing mud rheology, and the content of the low-gravity solids in the mud was carefully controlled at as low as possible level. With these measures, problems such as narrow drilling windows, difficulties in controlling the rheology of a high temperature high solids content drilling fluid with ultra-high density were successfully solved, ensuring the stability of the properties of the ultra-high density drilling fluid in high temperature drilling and completion operations. The drilling of this well has created six drilling technical indicators in this area at the same period. An industrial oil flow of 302.4 m3 was produced daily, realizing the target of exploring oil and gas in the deepest well in the Bayan oilfield, and of providing technical support to the drilling and completion operations.
-
表 1 不同降滤失剂单剂的抗高温性能
基浆配方 实验条件 AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL3.5%膨润土浆+0.1%烧碱+2%Redu2 常温 54.0 45 9.0 12.0 200 ℃、16 h 13.0 12 1.0 22.0 48 3.5%膨润土浆+0.1%烧碱+2%Redu2+50%有机盐 常温 38.0 30 8.0 12.5 200 ℃、16 h 28.0 22 6.0 17.5 28 3.5%膨润土浆+0.1%烧碱+2%Redu200 常温 38.0 33 5.0 7.2 200 ℃、16 h 24.5 24 0.5 7.0 24 3.5%膨润土浆+0.1%烧碱+2%Redu200 常温 38.0 33 5.0 7.2 220 ℃、16 h 23.0 20 3.0 15.0 45 3.5%膨润土浆+0.1%烧碱+2%Redu200+50%复合有机盐 常温 30.0 23 7.0 8.5 220 ℃、16 h 20.0 15 5.0 11.0 29 表 2 在基浆中加入不同加量纳米封堵剂NAX50的性能
NAX50/
%φ600/
φ300AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mL滤失量
降低率/%0 4/3 2.0 1 1.0 43.0 1 6/4 3.0 2 1.0 18.0 58.1 2 7/5 3.5 2 1.5 16.8 60.9 3 10/6 5.0 4 1.0 10.4 75.8 4 11/6 5.5 5 0.5 8.6 80.0 5 12/7 6.0 5 1.0 7.4 82.8 注:基浆为:350 mL水+1.05 g无水Na2CO3+28 g钻井液试验用评价土 表 3 纳米封堵剂NAX50的封堵性能
实验配方 不同时间的滤失量/mL 1 min 2 min 7.5 min 30 min 水 198.0 244.0 全滤失 5%NAX50溶液+0.15%
十二烷基硫酸钠8.0 9.8 12.0 19.2 5%NAX50溶液 7.6 9.0 10.8 17.2 表 4 不同有机盐钻井液的抗温性
钻井液 实验
条件ρ/
g·cm−3φ6/
φ3Gel/
Pa/PaAV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL1# 热滚前 1.35 3/2 1.0/3.0 42.0 34 8.0 0.8 热滚后 1.34 3/2 1.0/2.0 48.5 44 4.5 1.0 8.4 2# 热滚前 1.85 4/3 1.5/6.0 82.5 68 14.5 1.2 热滚后 1.84 4/3 1.0/3.0 68.5 58 10.5 2.0 11.2 3# 热滚前 2.50 7/5 3.0/12.5 121.0 109 12.0 1.2 热滚后 2.49 4/3 2.0/5.0 104.5 99 5.5 0.8 8.8 注:热滚条件为220 ℃、16 h,60 ℃测试流变性,常温下测试FLAPI和密度。1#、2#配方无沉降,3#配方软沉3~4 cm,钻井液密度加重至2.00 g/cm3以后,选用高密度重晶石粉 表 5 复合有机盐钻井液抗盐及抗岩粉污染实验
污染物 实验
条件ρ/
g·cm−3Gel/
Pa/PaPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL0 常温 2.50 1.5/6.0 38 8.5 1.4 11.2 20%NaCl 热滚后 2.50 1.5/4.5 41 8.0 1.6 11.6 0 常温 2.50 1.5/6.0 38 8.5 1.4 11.2 5%CaCl2 热滚后 2.50 2.0/5.0 39 6.5 1.4 11.4 0 常温 1.48 1.5/4.5 37 8.5 1.4 11.2 5%岩粉 常温 1.50 1.5/4.5 38 8.5 1.2 11.2 10%岩粉 常温 1.52 2.0/5.0 39 7.0 1.2 11.0 注:热滚条件为180 ℃、16 h, FLHTHP在180 ℃测试,60 ℃检测流变性能,常温下测试FLAPI和密度 表 6 河探1井四开及完井期间钻井液的流变性能
ρ/
g·cm-3FV/
sφ600/
φ300φ200/
φ100φ6/
φ3Gel/
Pa/PaAV/
mPa·sPV/
mPa·sYP/
Pa1.86 80 120/71 40/21 2.0/1.0 0.5/2.5 60 49 11.0 1.95 107 156/90 55/29 3.0/1.5 1.5/3.5 78 66 12.0 2.26 94 196/113 57/31 3.0/2.0 1.5/3.0 98 83 15.0 2.45 110 260/139 97/53 6.0/3.0 2.5/7.5 130 121 9.5 2.55 130 226/124 87/48 6.0/3.0 4.5/11.0 113 102 11.0 -
[1] 易邵金,向兴金,梅平,等. 高密度溴盐盐水的健康、安全与环境(HSE)试验研究[J]. 钻井液与完井液,2000,17(6):25-26,29. doi: 10.3969/j.issn.1001-5620.2000.06.007YI Shaojin, XIANG Xingjin, MEI Ping, et al. Experimental study on health, safety and environment (HSE) of high density brominated salts[J]. Drilling Fluid & Completion Fluid, 2000, 17(6):25-26,29. doi: 10.3969/j.issn.1001-5620.2000.06.007 [2] 胡德云. 超高密度(ρ≥3.00 g/cm3)钻井液的研究与应用[J]. 钻井液与完井液,2001,18(1):6-11.HU Deyun. Ultra high density( ρ≥ 3.00 g/cm3) drilling fluid[J]. Drilling Fluid & Completion Fluid, 2001, 18(1):6-11. [3] 沈伟,李银素,张菊芬,等. 抗盐钙抗高温的活化重晶石PF-BARA[J]. 钻井液与完井液,2001,18(1):1-5.SHEN Wei, LI Yinsu, ZHANG Jufen, et al. Activated barite resistant to calcium salt and high temperature PF-BARA[J]. Drilling Fluid & Completion Fluid, 2001, 18(1):1-5. [4] 宋玉龙,贾铎,齐玉才,等. 活化铁矿粉加重剂浆在塔西南地区的现场应用[J]. 钻井液与完井液,1997,14(1):42-43.SONG Yulong, JIA Duo, QI Yucai, et al. Field application of activated iron ore powder weighting agent slurry in southwest Tarim[J]. Drilling Fluid & Completion Fluid, 1997, 14(1):42-43. [5] 王信,张民立,庄伟,等. 高密度水基钻井液在小井 眼水平井中的应用[J]. 钻井液与完井液,2019,36(1):65-69. doi: 10.3969/j.issn.1001-5620.2019.01.013WANG Xin, ZHANG Minli, ZHUANG Wei, et al. Application of high density water base drilling fluid system in horizontal slim hole drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):65-69. doi: 10.3969/j.issn.1001-5620.2019.01.013 [6] 郭永宾,管申,刘智勤,等. 涠洲 12-1 油田水平井无固相有机盐钻井液技术[J]. 石油钻探技术,2017,45(6):31-36.GUO Yongbin, GUAN Shen, LIU Zhiqin, et al. Solid free organic salt drilling fluid technology for horizontal wells in Weizhou 12-1 oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6):31-36. [7] 许明标,刘卫红,林平,等. 一种获得具有稳定流变及滤失效果的高温水基钻井液的新方法[J]. 石油天然气学报,2009,31(4):115-118.XU Mingbiao, LIU Weihong, LIN Ping, et al. A new method to obtain stable rheological and filtration effect of high temperature water-based drilling fluid[J]. Oil and Gas Technology, 2009, 31(4):115-118. [8] 王建华,鄢捷年,丁彤伟. 高性能水基钻井液研究进 展[J]. 钻井液与完井液,2007,24(1):71-75. doi: 10.3969/j.issn.1001-5620.2007.01.020WANG Jianhua, YAN Jienian, DING Tongwei. Progresses in the researches on high performance water base muds[J]. Drilling Fluid & Completion Fluid, 2007, 24(1):71-75. doi: 10.3969/j.issn.1001-5620.2007.01.020 [9] 张民立, 王灿, 王信, 等 . 抗240 ℃高温的高密度复合有机盐钻井液及其制备方法: 中国, CN201610766919.0[P]. 2016-08-29.ZHANG Minli, WANG Can, WANG Xin, et al. High density compound organic salt drilling fluid resistant to 240 ℃ high temperature and its preparation method : China, CN201610766919.0[P]. 2016-08-29. [10] 黄桃,樊相生,陶卫东,等. 超高密度复合盐水钻井液流变性调控及应用[J]. 钻井液与完井液,2020,37(2):153-159.HUANG Tao, FAN Xiangsheng, TAO Weidong,et al. Rheology control and application of ultra-high-density compound brine drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):153-159. [11] 尹达,吴晓花,刘锋报,等. 抗160 ℃超高密度柴油基钻井液体系[J]. 钻井液与完井液,2019,36(3):280-286.YIN Da, WU Xiaohua, LIU Fengbao, et al. An ultra-high density diesel oil base drilling fluid for use at 160 ℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):280-286. [12] 邱正松,钟汉毅,黄维安,等. 高性能水基钻井液特性评价实验新方法[J]. 钻井液与完井液,2009,26(2):58-59. doi: 10.3969/j.issn.1001-5620.2009.02.018QIU Zhengsong, ZHONG Hanyi, HUANG Wei’an, et al. New experimental evaluation method of high performance water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2009, 26(2):58-59. doi: 10.3969/j.issn.1001-5620.2009.02.018 [13] 蔡利山, 胡新中, 刘四海. 等高密度钻井液瓶颈技术问题分析及发展趋势探讨[J].钻井液与完井液, 2009, 24(增刊): 38-44.CAI Lishan, HU Xinzhong, LIU Sihai, Analysis on the bottleneck technology of constant high density drilling fluid and discussion on its development trend[J].Drilling Fluid & Completion Fluid, 2009, 24(supplement): 38-44. [14] 蔚宝华,卢晓峰,王炳印. 高温井地层温度变化对井壁稳定性影响规律研究[J]. 钻井液与完井液,2004,21(6):15-18. doi: 10.3969/j.issn.1001-5620.2004.06.005WEI Baohua, LU Xiaofeng, WANG Bingyin. Law of temperature influence on wellbore stability in hot well[J]. Drilling Fluid & Completion Fluid, 2004, 21(6):15-18. doi: 10.3969/j.issn.1001-5620.2004.06.005 [15] 董晓强,李雄,方俊伟. 高密度钻井液高温静态沉降稳定性室内研究[J]. 钻井液与完井液,2020,37(5):626-629.DONG Xiaoqiang, LI Xiong, FANG Junwei. Laboratory study on high temperature static settlement stability of high density drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):626-629. [16] 张民立,庄伟,徐成金,等. 抗240 ℃高密度复合有机盐钻井液在翼探1井的应用[J]. 钻井液与完井液,2020,37(4):431-437. doi: 10.3969/j.issn.1001-5620.2020.04.005ZHANG Minli, ZHUANG Wei, XU Chengjin, et al. Application of 240 ℃ resistant high-density compound organic salt drilling fluid in well Yitan 1[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):431-437. doi: 10.3969/j.issn.1001-5620.2020.04.005 [17] 王信,张民立,王强,等. 青海柴达木盆地三高井钻井液技术[J]. 钻井液与完井液,2016,33(5):45-50. doi: 10.3969/j.issn.1001-5620.2016.06.008WANG Xin, ZHANG Minli, WANG Qiang, et al. Drilling fluid technology for “three high” wells in Qaidam basin in Qinghai[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):45-50. doi: 10.3969/j.issn.1001-5620.2016.06.008 -