留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大温压域钻井液流变参数预测模型

李宁 刘洪涛 张权 刘雪琪 尹邦堂 王志远

李宁,刘洪涛,张权,等. 大温压域钻井液流变参数预测模型[J]. 钻井液与完井液,2023,40(2):143-155 doi: 10.12358/j.issn.1001-5620.2023.02.001
引用本文: 李宁,刘洪涛,张权,等. 大温压域钻井液流变参数预测模型[J]. 钻井液与完井液,2023,40(2):143-155 doi: 10.12358/j.issn.1001-5620.2023.02.001
LI Ning, LIU Hongtao, ZHANG Quan, et al.Model for predicting drilling fluid rheological parameters in wide temperature and pressure range[J]. Drilling Fluid & Completion Fluid,2023, 40(2):143-155 doi: 10.12358/j.issn.1001-5620.2023.02.001
Citation: LI Ning, LIU Hongtao, ZHANG Quan, et al.Model for predicting drilling fluid rheological parameters in wide temperature and pressure range[J]. Drilling Fluid & Completion Fluid,2023, 40(2):143-155 doi: 10.12358/j.issn.1001-5620.2023.02.001

大温压域钻井液流变参数预测模型

doi: 10.12358/j.issn.1001-5620.2023.02.001
基金项目: 国家自然科学基金基础科学中心项目“超深特深层油气钻采流动调控”(52288101)
详细信息
    作者简介:

    李宁,高级工程师,1970年生,毕业于中国石油大学(华东)钻井工程专业,现在从事钻井液技术研究工作。电话 (0996)2134516;E-mail:542751981@qq.com

    通讯作者:

    王志远,E-mail:wangzy1209@126.com

  • 中图分类号: TE254

Model for Predicting Drilling Fluid Rheological Parameters in Wide Temperature and Pressure Range

  • 摘要: 钻井液流变参数的精准预测对于高温高压井水力参数及井筒压力精确计算、保证钻井安全具有重要意义。基于构建的钻井液流变性实验数据库,对不同钻井液体系大温压范围内九种流变模式进行了适用性评价,其中油基钻井液体系优选了赫巴流变模式(中低温低压)和四参数流变模式(高温高压),水基钻井液体系在大温压范围内优选了双曲流变模式。优选的流变模式是高温高压井井筒压力准确预测的基础。基于实验数据开发与多元非线性拟合,提出了一种新的适用于大温压范围下不同钻井液体系、不同流变模式的流变参数预测模型,并对某高温高压井井筒压力进行了计算验证。计算结果表明:以双曲模式流变参数模型为基础计算的井底压力误差为1.31%,可以满足深层、超深层高温高压井井筒压力精确计算要求。

     

  • 图  1  不同温度、压力条件下钻井液的流变曲线

    图  2  不同温度、压力下钻井液流变参数的测量值与预测值对比

    图  3  常温常压下不同数据源、不同流变模式的拟合决定系数R2      

    图  4  不同温度、压力下双参数流变模式拟合决定系数R2

    图  6  不同温度、压力下四参数流变模式拟合决定系数R2

    图  5  不同温度、压力下三参数流变模式拟合决定系数R2

    图  7  不同温度、压力下三参数流变模式拟合决定系数R2局部放大图

    图  8  不同模式流变参数的测量值与计算值对比

    图  9  井筒压力计算流程图

    图  10  不同流变模式下X井循环压耗计算结果

    图  11  不同流变模式下X井井筒压力计算验证

    表  1  钻井液流变性的实验数据库

    序号数据源时间实验组数T/ ℃P/MPa
    1赵怀珍[18]2009590.00~240.00100.00
    2Steve Young[19]2012244.44~65.5610.34~51.71
    3Khaled J. Hassiba[20]2012820.00~232.220~241.39
    4Emanuel Stamatakis[21]20131065.56~315.560~275.79
    5Kumapayi Olamide[22]20141648.89~82.223.40
    6H. Fan[15]20154820.00~180.000~4.00
    7Kay A. Galindo[23]2015648.89~204.4413.79
    8P K S Sairam[24]2015423.89~148.896.89~68.95
    9滕学清[14]20153020.00~180.001.00~8.00
    10许洁[25]20151360.00~200.006.00
    11马光曦[26]20161620.00~180.006.00~8.00
    12Erna Kakadjian[27]2019114.44~121.110.10~137.90
    13周号博[28]20194820.00~180.000~8.00
    14Vikrant Wagle[29]2020965.56~166.1113.47~64.11
    15Ashok Santra[30]20212165.56~232.2268.95
    下载: 导出CSV

    表  2  钻井液的流变模式分类

    类别流变模式表达式
    双参数宾汉模式$ \tau = {\tau _0} + {\mu _p}\gamma $
    幂律模式$ \tau = K{\gamma ^n} $
    卡森模式$ {\tau ^{1/2}} = \tau _c^{1/2} + \eta _\infty ^{1/2}{\gamma ^{1/2}} $
    三参数赫巴模式$ \tau = {\tau _0} + K{\gamma ^n} $
    罗斯模式$ \tau = A{\left( {\gamma + C} \right)^B} $
    Sisko模式$ \tau = a\gamma + b{\gamma ^c} $
    双曲模式$\tau = {\tau _0} + \dfrac{ {a\gamma } }{ {1 + b\gamma } }$
    林伯亨模式$\tau = {\tau _s} + {\eta _P}\gamma {\left( {1 + \dfrac{\beta }{\gamma } } \right)^{1/2} }$
    四参数四参数模式$ \tau = {\tau _0} + a\gamma + b{\gamma ^c} $
    下载: 导出CSV

    表  3  不同钻井液流变模式R2统计表

    流变模式油基钻井液R2范围/%水基钻井液R2范围/%
    <0.950.95~
    0.998
    >0.998<0.950.95~
    0.998
    >0.998
    宾汉模式3.1464.5532.3117.6557.8424.51
    幂律模式16.4064.559.5326.4765.697.84
    卡森模式1.5959.7938.6213.7372.5513.72
    赫巴模式0.5315.9683.51039.2260.78
    罗斯模式1.5942.3356.080.9847.0652.94
    Sisko模式0.5316.9382.544.9044.1250.98
    双曲模式0.5325.4074.07046.0853.92
    林伯亨模式0.7414.0885.186.5644.2649.18
    四参数模式1.5920.2178.2513.7349.0237.25
    下载: 导出CSV

    表  4  钻井液流变模式的优选结果

    钻井液类型温压范围
    (以150 ℃、69 MPa为界)
    流变模式优选结果
    油基钻井液中低温低压赫巴模式
    油基钻井液高温高压四参数模式
    水基钻井液大温压范围双曲模式
    下载: 导出CSV

    表  5  不同流变参数预测模型的决定系数R2对比

    数据源流变模式钻井液类型流变参数本文模型赵胜英高禹
    蒋官澄[33]宾汉水基AV
    PV
    0.999
    0.999
    0.998
    0.999
    0.999
    0.998
    谢春林[34]宾汉油基AV
    PV
    YP
    0.995
    0.995
    0.975
    0.994
    0.992
    0.962
    0.995
    0.995
    0.968
    Emanuel Stamatakis宾汉油基AV
    PV
    YP
    0.978
    0.975
    0.982
    0.977
    0.971
    0.981
    0.973
    0.965
    0.982
    Ashok Santra宾汉油基PV
    YP
    0.985
    0.984
    0.974
    0.968
    0.975
    0.974
    Erna Kakadjian宾汉油基PV
    YP
    0.992
    0.977
    0.994
    0.965
    0.991
    0.978
    H. Fan赫巴油基YP0.9810.9420.957
    稠度系数0.9230.9520.979
    流性指数0.916
    滕学清赫巴油基YP0.9720.9650.970
    稠度系数0.9840.9460.972
    流性指数0.935
    Ashok Santra四参数油基YP0.9770.96440.971
    黏度系数0.9810.9520.981
    稠度系数0.9920.9850.979
    流性指数0.948
    Erna Kakadjian四参数油基YP0.9850.9830.983
    黏性系数0.9950.9970.991
    稠度系数0.9850.9630.972
    流性指数0.922
    Emanuel Stamatakis四参数油基YP0.9910.9760.982
    黏性指数0.9830.9860.980
    稠度系数0.9870.9820.976
    流性指数0.956
    Khaled J. Hassiba双曲水基YP0.9860.9690.982
    稠度系数0.9390.9210.921
    剪切稀释系数0.894
    周号博双曲水基YP0.9790.9580.986
    稠度系数0.9980.9870.998
    剪切稀释系数0.931
    许洁双曲水基YP0.9790.9840.979
    稠度系数0.9790.9840.979
    剪切稀释系数0.923
    下载: 导出CSV

    表  6  各流变参数计算的平均误差

    流变模式流变参数平均误差/%
    赫巴模式动切力6.73
    稠度系数7.88
    流性指数9.36
    双曲模式动切力8.03
    稠度系数5.86
    剪切稀释系数9.81
    下载: 导出CSV
  • [1] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development direction of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005
    [2] 赵胜英,鄢捷年,舒勇,等. 油基钻井液高温高压流变参数预测模型[J]. 石油学报,2009,30(4):603-606. doi: 10.3321/j.issn:0253-2697.2009.04.023

    ZHAO Shengying, YAN Jienian, SHU Yong, et al. Prediction model of high temperature and high pressure rheological parameters of oil-based drilling fluid[J]. Acta Petrolei Sinica, 2009, 30(4):603-606. doi: 10.3321/j.issn:0253-2697.2009.04.023
    [3] BINGHAM E C. Fluidity and plasticity[M]. New York: McGraw-Hill, 1922.
    [4] OSTWALD W. About the rate function of the viscosity of dispersed systems[J]. IKolloid-Zeitschrift, 1925, 36(2):99-117. doi: 10.1007/BF01431449
    [5] HERSCHEL W H, BULKLEY R. Konsistenzmessungen von gummi-benzollösungen[J]. Kolloid-Zeitschrift, 1926, 39: 291-300.
    [6] SISKO A W. The flow of lubricating greases[J]. Industrial & Engineering Chemistry, 1958, 50(12):1789-1792.
    [7] CASSON N. A flow equation for pigment oil suspensions of the printing ink type[J]. In Rheology of Disperse Systems, 1959:84-104.
    [8] ROBERTSON R E. An improved mathematic model for relating shear stress to shear rate in drilling fluids and cement slurries[J]. Society of Petroleum Engineers Journal, 1976, 16(1):31-36. doi: 10.2118/5333-PA
    [9] 白家祉. 带屈服值的假塑性流体的双曲模式方程与压降计算式[J]. 石油学报,1980(2):57-63. doi: 10.7623/syxb198002008

    BAI JIazhi. Hyperbolic mode equation and pressure drop calculation formula of pseudoplastic fluid with yield value[J]. Acta Petrolei Sinica, 1980(2):57-63. doi: 10.7623/syxb198002008
    [10] 林柏亨. 一个新的钻井液流变模型[J]. 石油学报,1999,20(4):78-82. doi: 10.7623/syxb199904015

    LIN Baiheng. A new rheological model of drilling fluid[J]. Acta Petrolei Sinica, 1999, 20(4):78-82. doi: 10.7623/syxb199904015
    [11] 樊洪海,王果,张辉,等. 四参数流变模式及其水力计算模型[J]. 石油学报,2010,31(3):511-515. doi: 10.7623/syxb201003030

    FAN Honghai, WANG Guo, ZHANG Hui, et al. Four-parameter rheological mode and hydraulic calculation model[J]. Acta Petrolei Sinica, 2010, 31(3):511-515. doi: 10.7623/syxb201003030
    [12] FISK J V, JAMISON D E. Physical properties of drilling fluids at high temperatures and pressures[J]. Spe Drilling Engineering, 1989, 4(4):341-346. doi: 10.2118/17200-PA
    [13] 周福建,刘雨晴,杨贤友,等. 水包油钻井液高温高压流变性研究[J]. 石油学报,1999(3):85-89. doi: 10.7623/syxb199903014

    ZHOU Fujian, LIU Yuqing, YANG Xianyou, et al. Study on high temperature and high pressure rheology of oil-in-water drilling fluid[J]. Acta Petrolei Sinica, 1999(3):85-89. doi: 10.7623/syxb199903014
    [14] 滕学清,樊洪海,杨成新,等. 一种新的高温高压流变性分析模型[J]. 科学技术与工程,2015,15(34):162-167. doi: 10.3969/j.issn.1671-1815.2015.34.028

    TENG Xueqing, FAN Honghai, YANG Chengxin, et al. A new high temperature and high pressure rheology analysis model[J]. Science Technology and Engineering, 2015, 15(34):162-167. doi: 10.3969/j.issn.1671-1815.2015.34.028
    [15] FAN H, ZHOU H, MENG X, et al. Accurate prediction model for rheological properties of drilling fluids at high temperature and high pressure conditions[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. OnePetro, 2015.
    [16] 陈彬,李超,张春杰,等. 深水合成基钻井液高温高压流变特性[J]. 科学技术与工程,2022,22(4):1408-1415. doi: 10.3969/j.issn.1671-1815.2022.04.014

    CHEN Bin, LI Chao, ZHANG Chunjie, et al. Rheological characteristics of deepwater synthetic-based drilling fluid at high temperature and high pressure[J]. Science Technology and Engineering, 2022, 22(4):1408-1415. doi: 10.3969/j.issn.1671-1815.2022.04.014
    [17] 樊洪海,彭齐,滕学清,等. 不同流变模式钻井流体圆管层流压耗的通用精确算法[J]. 中国石油大学学报(自然科学版),2014,38(1):70-74.

    FAN Honghai, PENG Qi, TENG Xueqing, et al. General and accurate algorithm for laminar flow pressure loss of round pipe of drilling fluid with different rheological modes[J]. Journal of China University of Petroleum(Natural Science Edition), 2014, 38(1):70-74.
    [18] 赵怀珍,薛玉志,李公让,等. 抗高温水基钻井液超高温高压流变性研究[J]. 石油钻探技术,2009,37(1):5-9. doi: 10.3969/j.issn.1001-0890.2009.01.002

    ZHAO Huaizhen, XUE Yuzhi, LI Gongrang, et al. Study on ultra-high temperature and high pressure rheology of water-based drilling fluid[J]. Petroleum Drilling Technology, 2009, 37(1):5-9. doi: 10.3969/j.issn.1001-0890.2009.01.002
    [19] YOUNG S, FRIEDHEIM J E, LEE J, et al. A New Generation of Flat Rheology Invert Drilling Fluids[M]. 2012.
    [20] AMANI M, HASSIBA K J. Salinity effect on the rheological properties of water based mud under high pressures and high temperatures of deep wells[M]. 2012.
    [21] STAMATAKIS E, YOUNG S, STEFANO G D. Meeting the Ultrahigh-Temperature/Ultrahigh-Pressure Fluid Challenge[J]. Spe Drilling & Completion, 2013, 28(1):86-92.
    [22] KUMAPAYI O, BELLO K, ADEKOMAYA O, et al. Investigating the effects of contaminants on the performance of mineral oil based versathin dispersant[M]. Society of Petroleum Engineers, 2014.
    [23] GALINDO K A, ZHA W, HUI Z, et al. High temperature, high performance water-based drilling fluid for extreme high temperature wells. 2015.
    [24] SAIRAM P, PANGU G, GAJJI B. Innovative and modular equipment design for rheology and compatibility measurement of complex wellbore fluids[C]// SPE/IADC Drilling Conference and Exhibition. 2015.
    [25] 许洁. 超高温水基钻井液技术及其流变模型研究[D]. 中国地质大学, 2015.

    XU Jie. Research on ultra-high temperature water-based drilling fluid technology and its rheological model[D]. China University of Geosciences, 2015.
    [26] 马光曦. 高温高压井ECD校核与控制技术研究[D]. 中国石油大学(北京), 2016.

    MA Guangxi. Research on ECD calibration and control technology of high temperature and high pressure wells[D]. China University of Petroleum(Beijing), 2016.
    [27] KAKADJIAN E, SHI A, PORTER J, et al. Low impact drilling fluid for deepwater drilling frontier[C]// Offshore Technology Conference Brasil. 2019.
    [28] 周号博. 基于黏度计读值预测的高温高压流变性预测方法[J]. 钻井液与完井液,2019,36(3):325-332. doi: 10.3969/j.issn.1001-5620.2019.03.011

    ZHOU Haobo. High temperature and high pressure rheology prediction method based on viscometer reading prediction[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):325-332. doi: 10.3969/j.issn.1001-5620.2019.03.011
    [29] WAGLE V, YAMI A, ONORIODE M, et al. Design, qualification and field deployment of low ECD organoclay-free invert emulsion drilling fluids[C]. SPE Russian Petroleum Technology Conference, Virtual, October 2020.
    [30] SANTRA A, PATEL H, SHANMUGAM S. Next generation high performance invert emulsion drilling fluids with flat-rheological behavior[C]//SPE International Conference on Oilfield Chemistry. OnePetro, 2021.
    [31] Recommended practice on the rheology and hydraulics of oil-well drilling fluids [superseded:Api bull 13d]:API RP 13D-1995[S].
    [32] 高禹. 高温高压钻井液流变性研究[D]. 中国石油大学(华东), 2019.

    GAO Yu. Study on rheology of high temperature and high pressure drilling fluid[D]. China University of Petroleum (East China), 2019.
    [33] 蒋官澄,吴学诗,鄢捷年,等. 深井水基钻井液高温高压流变特性的研究[J]. 钻井液与完井液,1994(5):21-26.

    JIANG Guancheng, WU Xueshi, YAN Jienian, et al. Study on high temperature and high pressure rheological characteristics of water-based drilling fluid in deep well[J]. Drilling Fluid & Completion Fluid, 1994(5):21-26.
    [34] 谢春林,杨丽丽,蒋官澄,等. 高温高压耦合条件下油基钻井液的流变特性规律及其数学模型[J]. 钻井液与完井液,2021,38(5):568-575.

    XIE Chunlin, YANG Lili, JIANG Guancheng, et al. Rheological characteristics and mathematical model of oil-based drilling fluid under high temperature and high pressure coupling conditions[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):568-575.
    [35] 陈彬,张伟国,姚磊,等. 基于井壁稳定及储层保护的钻井液技术[J]. 石油钻采工艺,2021,43(2):184-188.

    CHEN Bin, ZHANG Weiguo, YAO Lei, et al. Drilling fluid technology based on well stability and reservoir protection[J]. Oil Drilling & Production Technology, 2021, 43(2):184-188.
    [36] 黄志洋,赵雄虎,苗留洁,等. 智能流体研究进展及其在钻井液中的应用与展望[J]. 石油钻采工艺,2022,44(3):283-290.

    HUANG Zhiyang, ZHAO Xionghu, MIAO Liujie, et al. Research progress of intelligent fluid and its application to drilling fluids[J]. Oil Drilling & Production Technology, 2022, 44(3):283-290.
    [37] 路保平. 基于地层性质与环空状态的钻井液流变参数优选[J]. 钻井液与完井液,2020,37(4):438-443.

    LU Baoping. Optimization of drilling fluid rheology based on formation characteristics and annular state[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):438-443.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  251
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 修回日期:  2023-01-23
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回