Reservoir Damage Diagnosis and Acidizing Extended Effect Technology of Massive Sewage Reinjection Wells with Thousands of Cubic Meters
-
摘要: 针对渤海C油田群日注水量达上千方的污水回注井面临注入量大幅下降、酸化低效的问题,利用储层特征及岩石物性分析、水质普查及分析、结垢预测、软件模拟等综合手段,找出了此类井型的伤害主因是微粒运移,伤害半径为0.3~0.5 m,伤害次因是结垢、固相等堵塞,结垢类型为碳酸钙,两种注入水的结垢量分别为287.6 mg/L和357.1 mg/L,固相堵塞物主要是白云石类矿物,伤害半径为0.2 m。同时分析了以往酸化低效的原因是,由于采用在线酸化工艺,导致千方污水回注井的注水量远超注酸量,酸液浓度稀释比例过大,同时酸液无法有效解除复合伤害而产生的。采用盐酸、乙酸、氟硅酸、氟硼酸、HEDP主酸复配柠檬酸、季铵盐、SDBS等添加剂,研发了HLCHEM-Y酸化体系,解决了复合伤害问题。采用3.0~4.8 m3/min大排量拖轮注酸工艺,解决了海上平台空间受限条件下,千方污水回注井低排量注酸工艺效果差的难题。配套技术在C油田群开展了16井次应用,取得了酸化后单井平均增注从116 000 m3延长至399 000 m3,平均有效期从44 d延长至152 d的显著效果。Abstract: The sewage reinjection wells in Bohai C oilfield group with a daily injection volume of thousands of cubic meters which are facing the problems of sharp decline in injection volume and low efficiency of acidification. Using the integration methods of reservoir characteristics and rock physical property analysis, water quality survey and analysis, scaling prediction, software simulation, it is found that the main cause of damage of the well type is particle migration, and the damage radius is 0.3 m~0.5 m. The secondary cause of damage is scaling, solid plugging. The scaling type is calcium carbonate. The scaling amounts of the two kinds of injected water are 287.6 mg/L and 357.1 mg/L respectively. The solid plugging is mainly dolomite minerals, and the damage radius is 0.2 m. At the same time, it is analyzed that the reason for the low efficiency of acidification in the past is the use of online acidification process, which leads to the water injection volume of massive sewage reinjection well far exceeding the acid injection volume, the acid concentration dilution ratio is too large, and the acid can not effectively remove the compound damage. HLCHEM-Y acidification system was developed by using hydrochloric acid, acetic acid, fluorosilicic acid, HEDP main acid, citric acid, quaternary ammonium salt, SDBS and other additives can be used to solve problem of compound injur. The 3 m3/min~4.8 m3/min large displacement tug acid injection process is adopted to solve the problem of poor effect of low displacement acid injection process in massive sewage reinjection well under the limited space of offshore platform. The supporting technology has been applied in 16 wells of C Oilfield Group which has achieved significant results in extending the average injection rate increase from 116,000 m3 to 399,000 m3 after acidification, and the average validity period extend from 44 days to 152 days.
-
Key words:
- Reservoir damage /
- Diagnose /
- Acidification /
- Delay effect /
- Reinjection well
-
表 1 C油田群2018~2021年注水异常指标
取样日期 取样点 固体悬浮
物含量/
mg·L−1粒径中值/
μm水中含油/
mg·L−12018/8/31 CEPJ 1.8~3.8 2.243~2.261 9~18 2019/9/18 CEPJ 3.6~4.7 2.449~2.657 1~7 2020/9/20 CEPJ 5.0~18.0 2.430~2.650 16~19 FPSO 14.0~20.0 1.880~2.740 14~19 2020/10/1~10.24 FPSO 5.2~8.2 2.600~3.670 18~21 2021/7/17~8/14 CEPJ 20.8~23.6 4.420~4.680 23~27 表 2 C油田群注水结垢预测结果
垢型 CEPJ水结垢预测结果 FPSO水结垢预测结果 表 3 垢样溶蚀性能评价实验结果
酸液 滤纸重/
g垢样重/
g溶后重/
g溶蚀量/
g溶蚀率/
%12%HCl 1.0157 5.0245 3.0935 2.9467 58.64 6%HCl+2%HF 0.9849 5.0138 2.3732 3.6255 72.31 6%HCl+8%HBF4 0.9974 5.0256 2.7942 3.2288 64.25 HLCHEM-Y
主体酸0.9967 5.0181 1.7091 4.3057 85.80 注:与主体酸在60 ℃反应8 h 表 4 稳定黏土性能评价实验结果
膨润土∶酸液
(g∶mL)黏土阳离子交换
容量(CEC)/(mmol·g-1)降低值/
%经酸液处理后 处理前 1∶5 2.27 27.42 91.72 1∶10 1.38 94.97 1∶20 0.98 96.43 表 5 C油田群千方污水回注井酸化延效应用统计
井号 酸化前(30 d) 酸化后(30 d) 有效期/
d增注量/
104 m3平均油压/
MPa平均
回注量/
m3·d−1视吸水指数/
m3/(d·MPa)平均油压/
MPa平均
回注量/
m3·d−1视吸水指数/
m3/(d·MPa)A48S2 9.85 6923.0 702.84 2.18 5219.0 2394.04 >281 >35.96 J62 8.27 5376.0 650.06 3.37 6050.0 1795.25 235 140.96 J63 8.31 6388.0 768.71 8.94 12 309.0 1376.85 217 87.86 A45S1 10.74 4448.0 414.15 10.41 11 625.0 1116.71 207 118.01 J59 10.64 7900.0 742.48 10.21 11 850.0 1160.63 >210 >51.15 J60 10.60 8587.0 810.09 10.08 11 815.0 1172.12 >204 >44.68 A11S1 9.52 5337.0 560.61 8.38 8486.0 1012.65 >199 >58.65 I35 9.70 3914.0 403.50 6.50 5771.0 887.85 >175 >12.12 A19H 7.38 6027.0 816.67 6.67 10 547.4 1581.31 >169 >15.52 I36 7.50 7876.0 1050.13 9.17 12 849.8 1401.29 >165 >11.87 A67H1 7.76 3181.0 409.92 5.27 3057.0 580.08 >159 >15.02 A45S1 9.50 5799.0 610.46 8.73 7058.8 808.57 >50 >11.42 J63 10.20 8393.3 822.87 7.10 11876.5 1672.75 >45 >9.04 J62 10.20 8481.8 831.55 9.28 14462.8 1558.49 >41 >20.21 A58S2 10.50 1824.5 173.76 9.60 3447.9 359.16 >39 >5.48 A09 5.20 6520.6 1253.96 2.80 6891.1 2461.11 >34 >0.32 -
[1] 易飞,徐建平,蒋官澄,等. 基于水动力不稳定性的油水乳化储层伤害数值模拟[J]. 钻井液与完井液,2017,34(6):122-128. doi: 10.3969/j.issn.1001-5620.2017.06.023YI Fei, XU Jianping, JIANG Guancheng, et al. Numerical simulation of reservoir damage by oil/water emulsification based on hydrodynamic instability[J]. Drilling Fluid & Completion Fluid, 2017, 34(6):122-128. doi: 10.3969/j.issn.1001-5620.2017.06.023 [2] 黄波,徐建平,蒋官澄,等. 黏土膨胀储层伤害数值模拟研究[J]. 钻井液与完井液,2018,35(4):126-132. doi: 10.3969/j.issn.1001-5620.2018.04.023HUANG Bo, XU Jianping, JIANG Guancheng, et al. Numerical simulation of formation damage by clay swelling[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):126-132. doi: 10.3969/j.issn.1001-5620.2018.04.023 [3] SY/T 0600—2009, 油田水结垢趋势预测 [S].SY/T 0600-2009, rediction of scaling tendency in oil-field water[S]. [4] 王琪,刘江红,韩露,等. 油田主要结垢机理及结垢预测模型研究进展[J]. 长春理工大学学报(自然科学版),2016,39(1):129-133+138.WANG Qi, LIU Jianghong, HAN Lu, et al. Research progress of the main fouling mechanism and fouling prediction model in Oilfield[J]. Journal of Changchun University of Science and Technology(Natural Science Edition) , 2016, 39(1):129-133+138. [5] 刘倩,彭素芹,高建瑞,等. 油田水结垢预测技术研究进展[J]. 石油管材与仪器,2020,6(3):1-5. doi: 10.19459/j.cnki.61-1500/te.2020.03.001LIU Qian, PENG Suqin, GAO Jianrui, et al. Progress on prediction model of Oil field water scaling[J]. Petroleum Tubular Goods & Instruments, 2020, 6(3):1-5. doi: 10.19459/j.cnki.61-1500/te.2020.03.001 [6] ODDO J E, TOMSON M B. Why scale forms and how to predict[J]. SPE Production & Facilities, 1997, 9(1):47-54. [7] ODDO J E, TOMSON M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. Journal of Petroleum Technology, 1982, 34(7):1583-1590. doi: 10.2118/10352-PA [8] 张伟康,唐洪明,邓家胜,等. 加酸压裂油井结垢机理研究-以玛131井区为例[J]. 石化技术,2022,29(4):151-152.ZHANG Weikang, TANG Hongming, DENG Jiasheng, et al. Study on scaling mechanism of acid fracturing oil Wells :A case study of Mahu 131 well area[J]. Petrochemical Industry Technology, 2022, 29(4):151-152. [9] 刘平礼,张璐,潘亿勇,等. 海上油田注水井单步法在线酸化技术[J]. 西南石油大学学报(自然科学版),2014,36(5):148-154.LIU Pingli, ZHANG Lu, PAN Yiyong, et al. Single step online acidizing technology for offshore water injection wells[J]. Journal of Southwest Petroleum University(Science& TechnologyEdition) , 2014, 36(5):148-154. [10] 孙林, 孟向丽, 蒋林宏, 等. 渤海油田注水井酸化低效对策研究[J]. 特种油气藏, 2016, 23(3): 144-147.SUN Lin, MENG Xiangli, JIANG Linhong, et al. Countermeasures of inefficient acidification in water injection wells of Bohai Oilfield [J]. Special Oil & Gas Reservoirs, 23(3): 144-147. [11] 张彩虹,杨乾隆,李发旺,等. 砂岩油藏注水井脉冲式在线注入酸化增注技术[J]. 钻井液与完井液,2019,36(2):261-264. doi: 10.3969/j.issn.1001-5620.2019.02.023ZHANG Caihong, YANG Qian, LI Fawang, et al. Pulsed online acidizing augmented injection to sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):261-264. doi: 10.3969/j.issn.1001-5620.2019.02.023 [12] 孙林,李旭光,黄利平,等. 渤海油田注水井延效酸化技术研究与应用[J]. 石油钻探技术,2021,49(2):90-95. doi: 10.11911/syztjs.2021029SUN Lin, LI Xuguang, HUANG Liping, et al. Research and application of prolonged-effect acidizing technology for water injection wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2):90-95. doi: 10.11911/syztjs.2021029 [13] 李年银,赵立强,刘平礼,等. 多氢酸酸化技术及其应用[J]. 西南石油大学学报(自然科学版),2009,31(6):131-134+216-217.LI Nianyin, ZHAO Liqiang, LIU pingli, et al. The acidizing technology and application of multi-hydrogen acid[J]. Journal of Southwest Petroleum University(Science& TechnologyEdition) , 2009, 31(6):131-134+216-217. [14] 高嘉珮,彭冲,牛梦龙,等. 多氢酸酸化反应特征及动力学[J]. 石油学报,2019,40(2):207-214. doi: 10.7623/syxb201902009GAO Jiapei, PENG Chong, LIU Menglong, et al. Acidification characteristics and kinetics of multi-hydrogen ancd[J]. Acta Petrolei Sinica, 2019, 40(2):207-214. doi: 10.7623/syxb201902009 [15] 樊世忠. 保护油气层技术讲座 第八讲 油气层敏感性评价试验(Ⅱ)(特殊岩心分析)[J]. 钻井液与完井液,1990,7(1):32-39.FAN Shizhong. Workshop for technology of protecting oil and gas bearing zonge lecture(Ⅷ) reservoir sensitivity evaluation(special core analysis)[J]. Drilling Fluid & Completion Fluid, 1990, 7(1):32-39. [16] 曾德智,陶冶,郭锋,等. 高温高酸性回注井环空保护液复配实验研究[J]. 特种油气藏,2020,27(2):152-156.ZENG Dezhi, TAO Ye, GUO Feng, et al. Annular protection fluid compounding experiment for high temperature-acid reinjection well[J]. Special Oil & Gas Reservoirs, 2020, 27(2):152-156. -