Optimized Design of Class A Low Permeability Early Strength Oil Well Cement Surry
-
摘要: 为解决厄瓜多尔A级水泥适应温度、深度范围窄、初始稠度大、可泵性差的难点,开展基于A级水泥的水泥浆配方优化设计研究。通过对A级油井水泥成分分析,水泥密度、细度和比表面积等测试,并开展了其水泥浆稠化性能和抗污染实验,优选出了基于厄瓜多尔低渗、早强和适应范围更广的水泥浆体系。结果表明,A级水泥比表面积为4100~4500 cm3/g,Na2O含量为0.47%;A级水泥浆体系适用范围可达65 ℃,10 h的抗压强度均能达到3.5 MPa,渗透率为0.1936 mD,体积收缩率为0.03%。该水泥浆体系在MARIANN-78井技术套管固井施工中进行了应用,CBL/VDL测井结果显示固井质量为优质,显著改善了厄瓜多尔A级油井水泥的性能。Abstract: The class a cement used in the Ecuador project has several disadvantages such as narrow temperature and formation depth ranges in which the cement can be used normally, high initial consistency and poor pumpability etc. To solve these problems, study was conducted to optimize the class a cement slurry composition. a new cement slurry was developed as a result of the study. Laboratory experimental results show that the class a cement has specific area of 4100 - 4500 cm2/g and Na2O content of 0.47%. The upper limit of working temperature of the class a cement slurry is 65 ℃, the 10 h compressive strength of the cement slurry can reach 3.5 MPa, and the set cement has permeability of 0.1936 mD and percent volumetric shrinking of 0.03%. This new cement slurry was used to cement the technical casing of the well Mariann-78. CBL/VDL well logging data show that the quality of the cementing job is excellent; the performance of the class a cement slurry used in the Ecuador project has been significantly improved.
-
表 1 不同厂家水泥的化学成分
% 水泥厂家 烧失量 SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 合计 UNACEM A级 1.00 29.40 7.39 4.01 51.39 2.20 2.41 0.47 0.46 0.30 99.03 HOLCIM A级 1.46 27.10 7.47 4.00 54.34 1.59 2.24 1.30 0.10 0.02 99.62 德国 G级 0.98 20.42 3.52 5.57 62.92 4.12 1.98 0.20 0.08 0.01 99.80 表 2 不同水泥石在不同温度下养护不同时间的抗压强度
水泥厂家 不同温度(℃)水泥石的抗压强度/MPa 1 d 3 d 7 d 28 d 25 45 65 85 25 45 65 85 25 45 65 85 25 45 65 85 UNACEM A级 13.0 16.4 17.3 18.7 21.3 22.5 22.8 23.3 26.2 27.3 27.9 28.2 32.4 32.7 33.1 33.5 HOLCIM A级 9.0 15.7 16.8 17.4 16.2 17.4 18.2 18.8 25.3 26.1 26.4 26.3 25.5 26.3 26.2 26.3 德国 G级 12.3 14.4 15.6 16.5 21.5 22.6 23.4 24.6 27.4 28.5 29.4 29.7 30.4 30.6 31.2 31.3 表 3 不同水泥石在不同温度下养护不同时间的体积收缩率
水泥厂家 不同温度(℃)水泥石的体积收缩率/% 1 d 3 d 7 d 28 d 25 45 65 85 25 45 65 85 25 45 65 85 25 45 65 85 UNACEM A级 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 HOLCIM A级 −2.04 −2.19 −2.84 −3.45 −2.45 −2.87 −3.08 −3.87 −4.16 −4.21 −4.35 −4.6 −4.54 −4.58 −4.58 −4.6 德国 G级 −1.03 −1.14 −1.44 −1.87 −1.86 −1.93 −2.03 −2.15 −2.54 −2.63 −2.72 −2.8 −2.73 −2.76 −2.78 −2.8 表 4 不同厂家生产的水泥配浆后的基本性能
水泥厂家 ρ水泥浆/
g·cm-3初始稠度/
Bct稠化/
minFL/
mLp/MPa 渗透率/
mD膨胀率/
%8 h 24 h UNACEM A级 1.80 55 45 1368 4.5 16.1 0.1936 0.03 HOLCIM A级 1.80 38 61 1628 3.8 15.4 0.2553 −4.60 德国 G级 1.89 30 111 1160 3.6 14.2 0.1896 −2.80 注:水泥浆的滤失量的测试条件为30 min、6.9 MPa;稠化时间的测试温度为45 ℃;抗压强度的养护温度为38 ℃ 表 5 技术套管领浆配方及性能
水固比 ρ/g·cm−3 游离水/
%FL/
mLp/
MPa初始稠
度/Bct稠化/
min0.88 1.56 0.10 113 12.2 10 331 注:稠化时间的测试条件为65 ℃、32 MPa,抗压强度的测试条件为80 ℃、23 h 表 6 技术套管尾浆配方及性能
水泥 水固
比ρ/
g·cm−3析水/
mLFLAPI/
mLp/
MPa初始稠
度/Bct稠化/
minA 0.41 1.87 0 48 23.85 21 215 表 7 技术套管领浆污染流变性测试
钻井液∶隔离
液∶水泥浆φ600 φ300 φ200 φ100 φ6 φ3 PV/mPa·s YP/Pa 100∶0∶0 136 75 59 44 15 10 61 7.2 95∶5∶0 125 90 74 54 15 10 35 28.1 75∶25∶0 0 0 50∶50∶0 155 101 78 51 15 14 54 24.1 25∶75∶0 0 0 5∶95∶0 0 0 0∶100∶0 200 137 106 72 11 5 63 37.8 0∶95∶5 0 0∶75∶25 0 0∶50∶50 121 70 54 29 3 2 51 9.7 0∶25∶75 100 64 47 31 8 7 36 14.3 0∶5∶95 132 92 74 52 19 16 40 26.6 0∶0∶100 43 24 16 9 1 0 19 2.6 25∶50∶25 91 65 43 33 11 6 26 19.9 注:测试温度为65 ℃ -
[1] 秦文政,顾军. A、 D级油井水泥的水化产物及其微观结构[J]. 石油与天然气化工,2008,37(4):324-327. doi: 10.3969/j.issn.1007-3426.2008.04.015QIN Wenzheng, GU Jun. Hydration products and microstructures of A D grade oil well cement[J]. Chemical Engineering of Oil & Gas, 2008, 37(4):324-327. doi: 10.3969/j.issn.1007-3426.2008.04.015 [2] 王贺宁,冯颖韬,祝国伟. 固井顶替效率研究综述[J]. 中国化工贸易,2015(4):124-124. doi: 10.3969/j.issn.1674-5167.2015.04.114WANG Hening, FENG Yingtao, ZHU Guowei. A review of cementing displacement efficiency[J]. China Chemical Trade, 2015(4):124-124. doi: 10.3969/j.issn.1674-5167.2015.04.114 [3] 路宁,王文斌,罗丽霞,等. 建筑水泥设计一次上返低密度防漏水泥浆体系室内研究[J]. 西部探矿工程,2016,28(9):59-62. doi: 10.3969/j.issn.1004-5716.2016.09.019LU Ning, WANG Wenbin, LUO Lixia, et al. Indoor study of low-density leak-proof cement slurry system for building cement design[J]. West-China Exploration Engineering, 2016, 28(9):59-62. doi: 10.3969/j.issn.1004-5716.2016.09.019 [4] 刘爱玲,李国华,王欢. A级水泥环的胀缩性能[J]. 钻井液与完井液,2004,21(5):12-14. doi: 10.3969/j.issn.1001-5620.2004.05.004LIU Ailing, LI Guohua, WANG Huan. Expansion and contraction properties of grade a cement sheath[J]. Drilling Fluid & Completion Fluid, 2004, 21(5):12-14. doi: 10.3969/j.issn.1001-5620.2004.05.004 [5] 刘崇建, 黄柏宗, 徐同台, 等. 油气井注水泥理论与应用[M]. 北京: 石油工业出版社, 2001.LIU Chongjian, HUANG Bozong, XU Tongtai, et al. Theory and application of cementing in oil and gas wells[M]. Beijing: Petroleum Industry Press, 2001. [6] 黄柏宗. 紧密堆积理论的微观机理及模型设计[J]. 石油钻探技术,2007,35(1):5-12. doi: 10.3969/j.issn.1001-0890.2007.01.002HUANG Bozong. Microscopic mechanism and model design of tight packing theory[J]. Oil Drilling Technology, 2007, 35(1):5-12. doi: 10.3969/j.issn.1001-0890.2007.01.002 [7] 肖雷. 大庆地区常用油井水泥性能对比分析及应用[J]. 西部探矿工程,2019,31(4):55-58. doi: 10.3969/j.issn.1004-5716.2019.04.020XIAO Lei. Comparative analysis and application of common oil well cement performance in Daqing area[J]. Western Prospecting Engineering, 2019, 31(4):55-58. doi: 10.3969/j.issn.1004-5716.2019.04.020 [8] 刘大为, 田锡君, 廖润康 译. 现代固井技术[M]. 沈阳: 辽宁科学技术出版社, 1994 .LIU Dawei, TIAN Xijun, LIAO Runkang. Modern cementing technology[M]. Shenyang: Liaoning Science and Technology Press, 1994 [9] 王钟华. 高密度钻井液条件下的顶替效率[J]. 科学技术与工程,2011,11(24):5926-5929. doi: 10.3969/j.issn.1671-1815.2011.24.043WANG Zhonghua. Displacement efficiency under high density drilling fluid[J]. Science Technology and Engineering, 2011, 11(24):5926-5929. doi: 10.3969/j.issn.1671-1815.2011.24.043 [10] 李洋,卢海川,邢秀萍,等. 改善固井第二界面胶结质量研究综述[J]. 西部探矿工程,2016,28(6):62-65. doi: 10.3969/j.issn.1004-5716.2016.06.020LI Yang, LU Haichuan, XING Xiuping, et al. Review on improving the quality of cementing at the second interface of cementing[J]. West-China Exploration Engineering, 2016, 28(6):62-65. doi: 10.3969/j.issn.1004-5716.2016.06.020 [11] 黄柏宗,林恩平,吕光明,等. 固井水泥环柱的腐蚀研究[J]. 油田化学,1999(4):377-383. doi: 10.19346/j.cnki.1000-4092.1999.04.025HUANG Bozong, LIN Enping, LYU Guangming, et al. Corrosion study of cemented ring column[J]. Oilfield Chemistry, 1999(4):377-383. doi: 10.19346/j.cnki.1000-4092.1999.04.025 [12] 方春飞,周仕明,李根生,等. 井径不规则性对固井顶替效率影响规律研究[J]. 石油机械,2016,44(10):1-5. doi: 10.16082/j.cnki.issn.1001-4578.2016.10.001FANG Chunfei, ZHOU Shiming, LI Gensheng, et al. Study on the influence of well diameter irregularity on cementing displacement efficiency[J]. Petroleum Machinery, 2016, 44(10):1-5. doi: 10.16082/j.cnki.issn.1001-4578.2016.10.001 [13] 姚晓. 油井水泥膨胀剂研究(Ⅱ)——膨胀机理及影响因素[J]. 钻井液与完井液,2004(5):45-50.YAO Xiao. Research on cement expansion agent for oil well—expansion mechanism and influencing factors[J]. Drilling Fluid & Completion Fluid, 2004(5):45-50. [14] 周崇峰,费中明,李德伟,等. 一种新型超高温固井水泥石抗强度衰退材料[J]. 钻井液与完井液,2022,39(1):71-75. doi: 10.13739/j.cnki.cn11-1899/tq.1993.07.006ZHOU Chongfeng, FEI Zhongming, LI Dewei, et al. Research on a new material to prevent the strength decline of set cement under ultra-high temperature[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):71-75. doi: 10.13739/j.cnki.cn11-1899/tq.1993.07.006 [15] 李进,龚宁,张启龙,等. 基于三维温度场的热采井水泥环完整性破坏的研究及对策[J]. 钻井液与完井液,2018,35(5):83-89.LI Jin, GONG Ning, ZHANG Qilong,et al. Study on and countermeasures to the loss of cement sheath integrity in thermal production wells based on 3-D temperature field[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):83-89. [16] 郭华,马倩芸,武治强,等. 高炉矿渣改性铝酸盐水泥材料腐蚀机理与性能[J]. 钻井液与完井液,2022,39(2):221-226.GUO Hua, MA Qianyun, WU Zhiqiang, et al. Research on the effect of blast furnace slag on low-temperature hydration characteristics and high-temperature mechanical properties of aluminate cement[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):221-226. -