Optimization Analysis Of Slurry Column Structure To Improve Cement Displacement Efficiency In Eccentric Annulus
-
摘要: 套管偏心是决定注水泥环空流速与流态演化的关键因素,进而制约了顶替效率的提升;优化浆柱结构是改善顶替效率的重要途径,而关于相关的理论机理未见报道。借助于计算流体力学Fluent软件,建立了不同套管偏心下水平环空3D模型,探讨了不同套管偏心下的顶替效率变化特性,结合套管偏心0.4时顶替效率差的案例,通过探究不同浆柱结构下的环空流体滞留体积分数,以推荐最佳注水泥浆柱结构。研究表明:①套管偏心0.1时,偏心效应与浮力作用下顶替效率优于居中工况;偏心度大于0.1后,在套管偏心与质量扩散效应耦合作用下,顶替效率逐渐降低;②先注入隔离液后注入冲洗液有利于充分发挥隔离液在正密度差下的顶替效果,再利用低密度冲洗液的冲刷作用,进而提高了顶替效率;③套管偏心时,宽边流速高于窄边,引起水泥浆从宽边提前返出,而窄边滞留大量钻井液的问题。模拟成果为偏心环空下浆柱结构设计与优化提供了重要理论依据。Abstract: Casing eccentricity is the key factor that determines the evolution of flow rate and flow pattern in the cementing annulus, which restricts the improvement of displacement efficiency. It is an important way to improve displacement efficiency by optimization of slurry column structure, and the related theoretical mechanism has not been reported. Using computational fluid dynamics of Fluent software, 3 D model horizontal annulus with different eccentric casing were developed, and the changes of displacement efficiency in different eccentric casing were discussed. Combined with the poor displacement efficiency with casing eccentricity of 0.4, the best slurry column structure was recommended through analysis of annulus fluid retention volume fraction in different column structure. The results showed that: ① Due to the combined effect of eccentricity and buoyancy, the displacement efficiency of casing eccentricity of 0.1 is better than that of casing concentricity; When the eccentricity is greater than 0.1, the displacement efficiency decreases gradually with the increase of eccentricity under the coupling effect of casing eccentricity and mass diffusion. ② injecting spacer first and then flushing fluid is beneficial to give full play to displacement effect of spacer under positive density difference, and the flushing effect of low density flushing fluid is utilized to improve displacement efficiency. ③ the velocity of wide side is higher than that of narrow side in the casing eccentricity, which causes the cementing slurry to return from the wide side in advance, while the narrow side retains a large amount of drilling fluid. The simulation results provide an important theoretical basis for the structure design and optimization of slurry column under eccentric annulus.
-
表 1 顶替过程中不同流体性质
流体类型 τ/Pa n K/(Pa·sn) ρ/(g·cm−3) 钻井液 10.043 0.528 0.494 1.30 隔离液 11.526 0.515 0.849 1.45 冲洗液 0 0.824 0.181 1.05 水泥浆 19.879 0.485 0.942 1.60 表 2 套管不同偏心条件下环空各相体积分数
环空液体 不同偏心度下环空液体的体积分数/% 0 0.10 0.20 0.30 0.40 0.50 钻井液 0 0 0 0.33 2.28 5.70 隔离液 7.71 6.32 8.40 12.40 11.84 9.64 水泥浆 92.29 93.68 91.58 87.27 85.88 84.66 表 3 井筒浆柱结构设计表
模拟序号 注入次序 模拟序号 注入次序 Case-1 钻井液-隔离液-
水泥浆Case-3 钻井液-冲洗液-
隔离液-水泥浆Case-2 钻井液-隔离液-
冲洗液-水泥浆Case-4 钻井液-冲洗液-隔离液-
冲洗液-水泥浆表 4 顶替结束时环空中各流体的体积分数
流体 体积分数/% Case-1 Case-2 Case-3 Case-4 钻井液 2.28 1.46 2.08 1.46 隔离液 11.84 8.52 12.64 10.47 冲洗液 0.35 0.02 0.46 水泥浆 85.88 89.67 85.26 87.61 -
[1] MALEKMOHAMMADI S, CARRASCO TEJA M, STOREY S, et al. An experimental study of laminar displacement flows in narrow vertical eccentric annuli[J]. Journal of Fluid Mechanics, 2010, 649:371-398. doi: 10.1017/S0022112009993508 [2] 魏凯,闫振峰,张林强,等. 深井井壁不规则对注水泥顶替效率的影响[J]. 石油钻采工艺,2020,42(6):726-730. doi: 10.13639/j.odpt.2020.06.010WEI Kai, YAN Zhenfeng, ZHANG Linqiang, et al. Influence of the irregular hole on the cement displacement efficiency in deep wells[J]. Oil Drilling & Production Technology, 2020, 42(6):726-730. doi: 10.13639/j.odpt.2020.06.010 [3] 姚明,刘景丽,卢三杰,等. 四川长宁页岩气速凝水泥浆体系研究与应用[J]. 钻井液与完井液,2021,38(3):356-359.YAO Ming, LIU Jingli, LU Sanjie, et al. Study and application of a quick-setting cement slurry in cementing shale gas wells in Changning, Sichuan[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):356-359. [4] XU Bingwei, ZHOU Shouwei, HE Faqi, et al. Using particle image velocimetry to evaluate the displacement efficiency of drilling mud in horizontal well cementing[J]. Journal of Petroleum Science and Engineering, 2020, 195:107647. doi: 10.1016/j.petrol.2020.107647 [5] 焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):512-520. doi: 10.3969/j.issn.1001-5620.2020.04.018JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan Basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):512-520. doi: 10.3969/j.issn.1001-5620.2020.04.018 [6] 李昊,王金堂,孙宝江,等. 海上大位移井固井顶替数值模拟研究[J]. 海洋工程装备与技术,2014,1(1):14-20. doi: 10.3969/j.issn.2095-7297.2014.01.003LI Hao, WANG Jintang, SUN Baojiang, et al. Simulation analysis of cementing displacement in offshore extended reach well[J]. Ocean Engineering Equipment and Technology, 2014, 1(1):14-20. doi: 10.3969/j.issn.2095-7297.2014.01.003 [7] 王斌斌,王瑞和,步玉环. 不同流态下水泥浆环空顶替的数值模拟研究[J]. 钻井液与完井液,2010,27(3):76-78. doi: 10.3969/j.issn.1001-5620.2010.03.021WANG Binbin, WANG Ruihe, BU Yuhuan. Numerical simulation on cementing displacement in different flow patterns[J]. Drilling Fluid & Completion Fluid, 2010, 27(3):76-78. doi: 10.3969/j.issn.1001-5620.2010.03.021 [8] 王金堂,孙宝江,李昊,等. 大位移井旋转套管固井顶替模拟分析[J]. 中国石油大学学报(自然科学版),2015,39(3):89-97.WANG Jintang, SUN Baojiang, LI Hao, et al. Simulation analysis of rotating-casing cementing displacement in extended reach well[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2015, 39(3):89-97. [9] 李明忠,王成文,王长权,等. 大斜度井偏心环空注水泥顶替数值模拟研究[J]. 石油钻探技术,2012,40(5):40-44. doi: 10.3969/j.issn.1001-0890.2012.05.009LI Mingzhong, WANG Chengwen, WANG Changquan, et al. Numerical simulation of cement displacement in eccentric annulus at highly deviated wells[J]. Petroleum Drilling Techniques, 2012, 40(5):40-44. doi: 10.3969/j.issn.1001-0890.2012.05.009 [10] YU Hao, TALEGHANI A D, LIAN Zhanghua. Impact of the dogleg geometry on displacement efficiency during cementing; an integrated modelling approach[J]. Journal of Petroleum Science and Engineering, 2019, 173:588-600. doi: 10.1016/j.petrol.2018.10.019 [11] 陶谦,周仕明,张晋凯,等. 水泥浆流变性对水平井固井顶替界面的影响——基于天河一号大规模集群计算平台的数值模拟[J]. 石油钻采工艺,2017,39(2):185-191. doi: 10.13639/j.odpt.2017.02.011TAO Qian, ZHOU Shiming, ZHANG Jinkai, et al. Effect of rheological property of slurry on cementing displacement interface of horizontal well: the numerical simulation based on large-scale cluster computing platform Tianhe-1[J]. Oil Drilling & Production Technology, 2017, 39(2):185-191. doi: 10.13639/j.odpt.2017.02.011 [12] 罗恒荣,张晋凯,周仕明,等. 偏心度和密度差耦合条件下水平井顶替界面特征研究[J]. 石油钻探技术,2016,44(4):65-71.LUO Hengrong, ZHANG Jinkai, ZHOU Shiming, et al. Horizontal well cement displacement interface features under the coupling of eccentricity and density difference[J]. Petroleum Drilling Techniques, 2016, 44(4):65-71. [13] 程永钦,李黔,尹虎,等. 基于赫巴流变模式的旋转套管顶替效率计算[J]. 钻井液与完井液,2019,36(2):229-233. doi: 10.3969/j.issn.1001-5620.2019.02.017CHENG Yongqin, LI Qian, YIN Hu, et al. Calculation of displacement efficiency when casing string is rotating based on Herschel-Bulkley model[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):229-233. doi: 10.3969/j.issn.1001-5620.2019.02.017 [14] ZHAO Yanlong, WANG Zhiming, ZENG Quanshu, et al. Lattice Boltzmann simulation for steady displacement interface in cementing horizontal wells with eccentric annuli[J]. Journal of Petroleum Science and Engineering, 2016, 145:213-221. doi: 10.1016/j.petrol.2016.04.005 [15] 杨谋,唐大千,袁中涛,等. 固井注水泥浆顶替效率评估的新模型[J]. 天然气工业,2019,39(6):115-122. doi: 10.3787/j.issn.1000-0976.2019.06.013YANG Mou, TANG Daqian, YUAN Zhongtao, et al. A new model for evaluating the displacement efficiency of cement slurry[J]. Natural Gas Industry, 2019, 39(6):115-122. doi: 10.3787/j.issn.1000-0976.2019.06.013 [16] ZULQARNAIN M , TYAG M. Development of simulations based correlations to predict the cement volume fraction in annular geometries after fluid displacements during primary cementing[J]. Journal of Petroleum Science and Engineering, 2016(145):1-10. -