Study on the Performance of a New Low Temperature Early Strength Agent for Well Cement Slurries
-
摘要: 针对浅层低温导致水泥浆强度发展缓慢的问题,通过分散-共沉淀法制备了一种新型低温固井早强剂ES-22,并对制备早强剂的粒径及微观结构进行分析。比较了在低温条件下,新型早强剂ES-22与其他无机早强剂对水泥浆强度发展的影响,并研究了新型早强剂不同加量对水泥浆性能的影响规律。研究表明,制备的早强剂ES-22粒径主要集中在15~25 μm之间。与其他早强剂相比,新型早强剂ES-22对水泥石早期抗压强度提升最大,且制备的早强剂在低温环境下对水泥石力学性能提升更大。早强剂掺入水泥浆中对水泥浆流变性影响不大,稠化时间无大幅度缩短,失水量降低。在20 ℃下养护24 h后,含4%早强剂水泥石的抗压强度和抗折强度比空白水泥石分别提高了204%和136%。新型早强剂在固井水泥浆中有很好的应用效果。Abstract: A new low temperature early-strength agent ES-22 has been developed through dispersion-coprecipitation method to solve the slow strength development of cement slurries in shallow and low temperature well cementing. In laboratory experiment, the particle size distribution and micro-structure of ES-22 were analyzed, the effects of ES-22 and other inorganic early-strength agents on the strength development of cement slurries at low temperatures were compared. The effects of ES-22 of different concentrations on the properties of cement slurries were also studied. It was found that ES-22 has particle sizes distributed between 15 μm and 25 μm. Compared with other early-strength agents, ES-22 is the best early-strength agent for the development of the early compressive strength of set cement. At low temperatures, ES-22 has even greater contribution to the development of the mechanical property of the set cement. ES-22 has little, if any, effects on the rheology of the cement slurry, the thickening time of the cement slurry becomes only a little short, and the volume of filter loss is reduced. In laboratory experiment, a set cement containing 4% ES-22 had its compressive strength and flexural strength increased by 204% and 136% respectively over the compressive strength and flexural strength of the blank set cement after aging at 20 ℃ for 24 hours. These results indicate that the early-strength agent ES-22 performs very well in oil well cement slurries.
-
Key words:
- Cement slurry /
- Low temperature /
- Well cementing /
- Early-strength agent /
- Compressive strength
-
早强剂 加量/% 粒径 抗压强度提高率/% 水化硅酸钙I 2 20 nm 46 聚羧酸/C—S—H 2 370 nm 40 水化硅酸钙II 3 1 μm 160 ES-22 2/3/4 21.59 μm 67/195/204 表 2 不同早强剂加量下的水泥浆流变性对比
早强剂/% φ300 φ200 φ100 φ6 φ3 游离液/% 0 202 142 74 4 3 0.2 2 218 156 79 6 4 0 4 235 172 88 9 6 0 6 252 191 101 14 11 0 -
[1] 温盛魁. 低温早强水泥浆体系的研究[D]. 青岛: 中国石油大学(华东), 2008.WENG Shengkui. Study on low temperature and early strength cement slurry system[D]. Qingdao: China University of Petroleum (East China), 2008. [2] 王伟齐,孙红,葛修润. 碱激发作用下海相软土固化研究[J]. 硅酸盐通报,2021,40(7):2248-2255. doi: 10.16552/j.cnki.issn1001-1625.20210511.001WANG Weiqi, SUN Hong, GE Xiurun. Study on solidification of marine soft soil under alkali excitation[J]. Bulletin of Silicates, 2021, 40(7):2248-2255. doi: 10.16552/j.cnki.issn1001-1625.20210511.001 [3] 步玉环,侯献海,郭胜来. 低温固井水泥浆体系的室内研究[J]. 钻井液与完井液,2016,33(1):79-83.BU Yuhuan, HOU Xianhai, GUO Shenglai. Indoor study on low-temperature cementing cementing slurry system[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):79-83. [4] WANG C W, WANG R H, BU Y, et al. Design and performance evaluation of a unique deepwater cement slurry[J]. SPE Drilling & Completion, 2011, 26(2):220-226. [5] 黄法礼,王振,易忠来,等. 超细矿渣粉在水泥颗粒中的密实填充作用[J]. 硅酸盐通报,2021,40(08):2647-2652. doi: 10.16552/j.cnki.issn1001-1625.2021.08.013HUANG Fali, WANG Zhen, YI Zhonglai, et al. Compact filling effect of ultrafine slag powder in cement particles[J]. Silicate Bulletin, 2021, 40(08):2647-2652. doi: 10.16552/j.cnki.issn1001-1625.2021.08.013 [6] 李犇. 水化硅酸钙(C—S—H)凝胶的细观力学机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.LI Ben. Mesoscopic mechanics of calcium silicate (C—S—H) gel hydrated[D]. Harbin: Harbin Engineering University, 2018. [7] 姚明,刘景丽,卢三杰,等. 四川长宁页岩气速凝水泥浆体系研究与应用[J]. 钻井液与完井液,2021,38(3):356-359.YAO Ming, LIU Jingli, LU Sanjie, et al. Research and application of gas velocity cement slurry system in Changning Shale, Sichuan[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):356-359. [8] 张海东,韦江雄,赵志广,等. 水化硅酸钙晶种对CaO-SiO2-H2O蒸压体系强度的影响及其机理分析[J]. 材料导报,2017,31(14):122-126. doi: 10.11896/j.issn.1005-023X.2017.014.026ZHANG Haidong, WEI Jiangxiong, ZHAO Zhiguang, et al. Effect of calcium silicate hydration on the strength of CaO-SiO2-H2O autoclaving system and its mechanism analysis[J]. Materials Herald, 2017, 31(14):122-126. doi: 10.11896/j.issn.1005-023X.2017.014.026 [9] HONG S Y, GLASSER F P. Phash relations in the CaO-SiO2-H2O system to 200 ℃ at saturated steam pressure[J]. Cem Concr Res, 2004, 34(9):1529-1534. doi: 10.1016/j.cemconres.2003.08.009 [10] 余林岑. 水化硅酸钙的制备及其对水泥水化过程的影响[D]. 上海: 华东理工大学, 2018.YU Lincen. Preparation of calcium silicate hydrate and its influence on cement hydration process[D]. Shanghai: East China University of Science and Technology, 2018. [11] TMOTO H, OHTA A, FENG Q, et al. Effect of a calcium silicate hydrate-type accelerator on the hydration and the early strength development of concrete cured at 5 or at 20 degrees centigrade[C]. Third International Conference on Sustainable Construction Materials and Technologies(SCMT 3), Kyoto, Japan. 2013. [12] KENNETH H, MIKE M F, DOMINIC O, et al. Overcoming deepwater cementing challenges insouth china sea, East Malaysia [C]. IADC\SPE 88012, 2004:1-8. [13] M MURTAZ E, RAHMAN M K, ALMAJED A A, et al. Mechanical, rheological and microstructural properties of saudi type G cement slurry with silica flour used in saudi oil field under HTHP conditions[C]. SPE 168101, 2013. [14] 许明标,唐海雄,刘正礼. 海洋深水水泥浆体系性能室内研究[J]. 石油天然气学报,2005,27(5):614-616. doi: 10.3969/j.issn.1000-9752.2005.05.024XU Mingbiao, TANG Haixiong, LIU Zhengli. Indoor study on the performance of marine deepwater cement slurry system[J]. Journal of Oil and Gas Technology, 2005, 27(5):614-616. doi: 10.3969/j.issn.1000-9752.2005.05.024 [15] 宋建建,许明标,王晓亮,等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015SONG Jianjian, XU Mingbiao, WANG Xiaoliang, et al. Effect of novel phase change materials on properties of low heat cement slurry[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015 [16] 张明昌,牟忠信. 水泥浆失水量对油气层损害影响的试验研究[J]. 钻井液与完井液,2005,22(1):74-75. doi: 10.3969/j.issn.1001-5620.2005.01.023ZHANG Mingchang, MOU Zhongxin. Experimental study on the effect of water loss of cement slurry on oil and gas layer damage[J]. Drilling Fluid & Completion Fluid, 2005, 22(1):74-75. doi: 10.3969/j.issn.1001-5620.2005.01.023 [17] 刘春英,任国盛,高小建. 新型复合早强剂对水泥砂浆力学性能的影响[J]. 硅酸盐通报,2020,39(12):3806-3811. doi: 10.16552/j.cnki.issn1001-1625.2020.12.009LIU Chunying, REN Guosheng, GAO Xiaojian. Effect of the new composite early strength agent on the mechanical properties of cement mortar[J]. Silicate Bulletin, 2020, 39(12):3806-3811. doi: 10.16552/j.cnki.issn1001-1625.2020.12.009 [18] 王晓亮,许明标,王清顺,等. 深水表层固井硅酸盐水泥浆体系研究[J]. 石油钻探技术,2010,38(6):11-14. doi: 10.3969/j.issn.1001-0890.2010.06.003WANG Xiaoliang, XU Mingbiao, WANG Qingshun, et al. Study on Portland cementing system for deepwater surface cementing[J]. Petroleum drilling technology, 2010, 38(6):11-14. doi: 10.3969/j.issn.1001-0890.2010.06.003 [19] 侯献海. 低温早强水泥体系的研究[D]. 青岛: 中国石油大学(华东), 2017.HOU Xianhai. Study on low temperature and early strength cement system[D]. Qingdao: China University of Petroleum (East China), 2017. [20] TAYLOR H F W. Proposed struture for calcium silicate hydrate gel[J]. Journal of the American Ceramic Society, 2005, 69(6):464-467. [21] 包亚莉,王红,梁浩东,等. 新型硅基分级孔材料的制备及其孔隙结构[J]. 天津大学学报(自然科学与工程技术版),2021,54(11):1151-1158.BAO Yali, WANG Hong, LIANG Haodong, et al. Preparation of novel silicon-based graded pore materials and their pore structure[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition) , 2021, 54(11):1151-1158. [22] 肖宇,张晓媛,石秀丽,等. 硅酸钙水化过程的X射线衍射分析[J]. 伊犁师范学院学报(自然科学版),2015,9(1):38-40.XIAO Yu, ZHANG Xiaoyuan, SHI Xiuli. et al. X-ray diffraction analysis of calcium silicate hydration process[J]. Journal of Yili Normal University (Natural Science Edition) , 2015, 9(1):38-40. [23] 袁琦,何小芳,张利红,等. 水热合成制备水化硅酸钙-聚氨酯纳米复合材料的结构分析[J]. 硅酸盐通报,2021,40(11):3565-3571. doi: 10.16552/j.cnki.issn1001-1625.20210827.003YUAN Qi, HE Xiaofang, ZHANG Lihong, et al. Structural analysis of calcium silicate-polyurethane nanocomposites prepared by hydrothermal synthesis[J]. Bulletin of Silicate, 2021, 40(11):3565-3571. doi: 10.16552/j.cnki.issn1001-1625.20210827.003 [24] SHEN W, ZHANG W, WANG J, et al. The microstructure formation of C—S-H in the HPC paste from nano-scale feature[J]. J Sust Cem-Based Mater, 2019, 8(4):199-213. [25] LAND G, STEPHAN D. The influence of nano-silica on the hydration of ordinary portland cement[J]. J Mater Sci, 2012, 47(2):1011-1017. doi: 10.1007/s10853-011-5881-1 [26] JEFFREY J,THOMAS, HAMLIN M. et al. Influence of Nucleation Seeding on the HydrationMechanisms of Tricalcium Silicate and Cement[J]. Journal of Physical Chemistry C, 2009, 113(11):4327-4334. doi: 10.1021/jp809811w [27] 张文生,王宏霞,叶家元. 聚羧酸类减水剂对水化硅酸钙微观结构的影响[J]. 硅酸盐学报,2006,34(5):546-550. doi: 10.3321/j.issn:0454-5648.2006.05.007ZHANG Wensheng, WANG Hongxia, YE Jiayuan. Effect of polycarboxylic acid superplasticizers on the microstructure of calcium silicate hydrate[J]. Journal of the Silicates, 2006, 34(5):546-550. doi: 10.3321/j.issn:0454-5648.2006.05.007 [28] 潘钢华. 一种水化硅酸钙早强剂的制备方法: CN107721228A [P]. 2018-02-23.PAN Ganghua. Preparation method of hydrated calcium silicate early strengthening agent: CN107721228A [P]. 2018-02-23. [29] 张朝阳, 蔡熠, 孔祥明,等. 纳米C—S—H对水泥水化、硬化浆体孔结构及混凝土强度的影响[J]. 硅酸盐学报,2019,47(05):585-593. doi: 10.14062/j.issn.0454-5648.2019.05.01ZHANG Chaoyang, CAI Yi, KONG Xiangming,et al. Effects of nano-C—S—H on cement hydration, hardened slurry pore structure and concrete strength[J]. Journal of the Silicates, 2019, 47(05):585-593. doi: 10.14062/j.issn.0454-5648.2019.05.01 [30] 黄健恒,喻培韬,张先文,等. 具有早强效应的长侧链梳状聚羧酸/C—S—H纳米复合物[J]. 广东化工,2019,46(16):242-243. doi: 10.3969/j.issn.1007-1865.2019.16.115HUANG Jianheng,YU Peitao,ZHANG Xianwen, et al. Long side chain comb polycarboxylic acid/C—S—H nanocomposite with early strong effect[J]. Guangdong Chemical Industry, 2019, 46(16):242-243. doi: 10.3969/j.issn.1007-1865.2019.16.115 [31] 王同友,符军放,赵琥. 纳米级水化硅酸钙晶种作为油井水泥促凝剂的研究[J]. 钻井液与完井液,2017,34(3):68-71. doi: 10.3969/j.issn.1001-5620.2017.03.013WANG Tongyou, FU Junfang, ZHAO Hu. Study on nano calcium silicate hydrate used as oil well cement accelerator[J]. Drilling Fluid & Completion Fluid, 2017, 34(3):68-71. doi: 10.3969/j.issn.1001-5620.2017.03.013 [32] MATSUYAMA H, YOUNG J F. Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution[J]. Advances in Cement Research, 2000, 12(1):29. doi: 10.1680/adcr.2000.12.1.29 [33] PLANK J, SCHNLEIN M, KANCHANASON V. Study on the early crystallization of calcium silicate hydrate (C—S—H) in the presence of polycarboxylate superplasticizers[J]. Journal of Organometallic Chemistry, 2018, 869:227-232. doi: 10.1016/j.jorganchem.2018.02.005 -