Study on High Water Content Microemulsion Flushing Fluid Used in Borehole Flushing
-
摘要: 随着油气资源开采的不断发展,油基钻井液因其优异的性能而广泛使用,这使得钻井后井筒井壁的润湿性转变为油润湿,影响固井水泥浆的胶结质量。通过冲洗液对井筒井壁上黏附的油基钻井液进行清洗,并转变其润湿性为水润湿是提高水泥胶结质量的有效措施之一。以EAB-40、SDBS、正丁醇、煤油、水为原料,制备了高水量(≥80%)型微乳液冲洗液,研究了微乳液的气泡率、清洗能力以及对岩心的润湿性转变能力,将微乳液制备成隔离液,通过隔离液清洗实验探究了隔离液的清洗性能以及与水泥浆、油基钻井液的相容性。结果表明,微乳液冲洗液的起泡率为17.07%,清洗率为可达99%以上,且对岩心具有优异的润湿性转变能力;同时所配制的隔离液对油基钻井液的清洗效率仍可达99%以上,且与油基钻井液和水泥浆混合后仍具有良好的相容性。此研究获得了一种清洗效率高、气泡率低、相容性好的清洗井筒用高含水量型微乳液冲洗液。Abstract: Oil based drilling fluids are now more and more used in the continuous development of oil and gas resources because of their excellent performance. Wells drilled with oil based drilling fluids have their borehole wall oil wetted, and this inevitably affects the cementing quality of the cement slurries. One way of dealing with this problem is to use flushing fluid to clean the oil based drilling fluids adhered on the borehole walls, hence turning the borehole wall to water wet. A high water content (≥ 80%) microemulsion flushing fluid was developed with raw materials such as EAB-40, SDBS, n-butanol, kerosene and water. The microemulsion flushing fluid was evaluated of its bubble rate, flushing capacity and ability to reverse the wettability of the borehole walls. The microemulsion was then made into a spacer, and flushing with the spacer fluid was done to investigate the flushing performance of the spacer and the compatibility of the spacer with cement slurries and oil based drilling fluids. The experimental results show that the microemulsion flushing fluid has a bubble rate of 17.07%, a flushing efficiency of at least 99%, and has excellent wettability reversal ability. The spacer made from the microemulsion flushing fluid has a flushing efficiency of at least 99%, and has good compatibility with cement slurries and oil based drilling fluids. As a result, this study has produced a high efficiency, low bubble rate, high water content microemulsion flushing fluid with good compatibility.
-
Key words:
- well cementing /
- Microemulsion /
- Flushing fluid /
- Spacer fluid /
- Reversal of wettability
-
表 1 隔离液与油基钻井液两相相容性评价
油基钻井液
类型混合现象 常温流动
度/cm93 ℃流动
度/cm1# 混合不增稠,
加热轻微变稀23.00 24.75 2# 混合不增稠,
加热轻微增稠22.50 20.50 3# 混合不增稠,
加热基本不变22.25 23.00 注:隔离液∶油基钻井液 = 3∶7 表 2 隔离液与油基钻井液、水泥浆三相相容性评价
油基钻井液
类型混合
现象常温流动度/
cm93 ℃流动度/
cm1# 混合不增稠,
加热基本不变25.50 26.00 2# 混合不增稠,
加热变稀24.00 27.75 3# 混合不增稠,
加热变稀18.00 21.00 注:水泥浆∶油基钻井液∶隔离液 = 7∶2∶1 -
[1] 娄晓东. 柴北缘大庆区块固井技术研究[D]. 大庆石油学院, 2007.LOU Xiaodong. Research on well cementation technology in daqing block of qaidamensis[D]. Daqing Petroleum Institute, 2007. [2] 雷妍. 驱油型冲洗液的研究[D]. 天津工业大学, 2017.LEI Yan. Research on flushing fluid for displacement of reservoir oil[D]. Tiangong University, 2017. [3] RAY W J, HINES D G. Method of cleaning a well bore prior to cementing: US, US5904208 A[P]. 1999. [4] 梁艳丽,郭娟,常少赟,等. 一种固井用油基泥浆冲洗液的制备及应用[J]. 河南化工,2020,37(10):19-21. doi: 10.14173/j.cnki.hnhg.2020.10.006LIANG Yanli, GUO Juan, CHANG Shaoyun, et al. Preparation and application of an oil base mud flushing fluid for cementing[J]. Henan Chemical Industry, 2020, 37(10):19-21. doi: 10.14173/j.cnki.hnhg.2020.10.006 [5] RAKSHIT A K, NASKAR B, MOULIK S P. Commemorating 75 years of microemulsion[J]. Current Science, 2019, 116(6):898-912. doi: 10.18520/cs/v116/i6/898-912 [6] SPERNATH A, ASERIN A. Microemulsions as carriers for drugs and nutraceuticals[J]. Advances in Colloid and Interface Science, 2006, 128-130:47-64. doi: 10.1016/j.cis.2006.11.016 [7] 李超. 纳米乳液、微乳液在油基泥浆清洗中的应用及纳米乳液的再循环利用[D]. 山东大学, 2014.LI Chao. Application of nanoemulsion and microemulsion in oil-based mud cleaning and recycling of nanoemulsion[D]. Shandong University, 2014. [8] 李斐,刘景涛. 微乳液体系冲洗油基钻井液的技术研究[J]. 石化技术,2015,22(4):174. doi: 10.3969/j.issn.1006-0235.2015.04.120LI Fei, LIU Jingtao. Study of micro-emulsion flushing oil-based drilling fluid[J]. Petrochemical Industry Technology, 2015, 22(4):174. doi: 10.3969/j.issn.1006-0235.2015.04.120 [9] 房恩楼,李浩然,张浩,等. 一种低温低密度可固化隔离液的研制与性能评价[[J]. 钻井液与完井液,2020,37(1):86-92.FANG Enlou, LI Haoran, ZHANG Hao, et al. Development and performance evaluation of a low temperature low density solidifiable spacer fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):86-92. [10] BREGE JJ, SHERBENY WIA EI, QUINTERO L, et al. Using microemulsion technology to remove oil-based mud in wellbore displacement and remediation applications[C]. North Africa technical conference and exhibition. OnePetro, 2012. [11] 李谦. 耐温微乳液和开关乳状液的制备及应用研究[D]. 山东大学, 2016.LI Qian. Preparation and application study of temperature-insensitive microemulsion and switchable emulsion[D]. Shandong University, 2016. [12] 王成文,孟仁洲,肖沣峰. 微乳液型油基钻井液冲洗液技术[J]. 油田化学,2017,34(3):422-427,443. doi: 10.19346/j.cnki.1000-4092.2017.03.009WANG Chengwen, MENG Renzhou, XIAO Fengfeng. Microemulsion Flushing Fluid Used for Oil-based Drilling Fluid[J]. Oilfield Chemistry, 2017, 34(3):422-427,443. doi: 10.19346/j.cnki.1000-4092.2017.03.009 [13] 赵启阳,张成金,严海兵,等. 提高油基钻井液固井质量的冲洗型隔离液技术[J]. 钻采工艺,2017,40(5):88-90, 94, 6-7.ZHAO Qiyang, ZHANG Chengjin, YAN Haibing, et al. Flush type spacer fluid technology used to improving cementing quality of OBM drilled wells[J]. Drilling & Production Technology, 2017, 40(5):88-90, 94, 6-7. [14] XU J, YIN A, ZHAO J, et al. Surfactant-free microemulsion composed of oleic acid, n-propanol, and H2O[J]. Journal of Physical Chemistry B, 2013, 117(1):450-456. doi: 10.1021/jp310282a [15] 关智谋,朱式业,李加兴,等. 山茶油微乳液的制备及稳定性分析[J]. 中国油脂,2019,44(2):55-59,63. doi: 10.3969/j.issn.1003-7969.2019.02.013GUAN Zhimou, ZHU Shiye, LI Jiaxing, et al. Preparation and stability of oil-tea camellia seed oil microemulsion[J]. China Oils and Fats, 2019, 44(2):55-59,63. doi: 10.3969/j.issn.1003-7969.2019.02.013 [16] FANG J, VENABLE L. Conductivity study of the microemulsion system sodium dodecyl sulfate-hexylamine-heptane-water[J]. Journal of Colloid and Interface Science, 1987, 116(1):269-277. doi: 10.1016/0021-9797(87)90120-2 [17] PAUL S, BISAL S, MOULIK S P. Physicochemical studies on microemulsions: test of the theories of percolation[J]. The Journal of Physical Chemistry, 2002, 96(2):896-901. [18] 涂思琦,谢飞燕,敖康伟,等. 一种适用于长宁页岩气井的高效洗油隔离液[J]. 钻井液与完井液,2022,39(1):82-86.TU Siqi, XIE Feiyan, AO Kangwei, et al. A high efficiency oil wash spacer for shale gas wells in Changning oilfield[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):82-86. [19] APPEL M, SPERH T L, WIPE R, et al. Water-AOT-alkylbenzene microemulsions: influence of alkyl chain length on structure and percolation behavior[J]. Journal of Colloid and Interface Science, 2012, 376(1):140-145. doi: 10.1016/j.jcis.2012.02.062 [20] YUAN X Q, Li Z Y, FENG Y, et al. Phase behavior and microstructure of azobenzene ionic liquids based photo-responsive microemulsions[J]. Journal of Molecular Liquids, 2019, 277:805-811. doi: 10.1016/j.molliq.2019.01.017 [21] 李玲,刁兆玉,王仲妮. 不同因素对CTAB/TX-100微乳液相图的影响[J]. 化学世界,2011,52(4):206-210. doi: 10.3969/j.issn.0367-6358.2011.04.004LI Lin, DIAO Zhaoyu, WANG Zhongni. Effect of Different Factors on Phase Behavior of CTAB/TX-100 Microemulsions[J]. Chemical World, 2011, 52(4):206-210. doi: 10.3969/j.issn.0367-6358.2011.04.004 [22] TONGCUMPOU C, ACOSTA E J, SCAMEHORN J F, et al. Enhanced triolein removal using microemulsions formulated with mixed surfactants[J]. Journal of Surfactants and Detergents, 2006, 9(2):181-189. doi: 10.1007/s11743-006-0388-5 [23] 王昆剑,冯硕,刘阳,等. 海上钻井油基钻屑清洗室内分析[J]. 钻井液与完井液,2022,39(2):194-199.WANG Kunjian, FENG Shuo, LIU Yang, et al. Laboratory research on offshore oil-based drill cuttings cleaning[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):194-199. -