留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巴彦河套盆地复杂储层固井技术

闫睿昶 徐明 虞海法 罗玉财 费中明 邱爱民 贾利军

闫睿昶,徐明,虞海法,等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88 doi: 10.12358/j.issn.1001-5620.2023.01.011
引用本文: 闫睿昶,徐明,虞海法,等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88 doi: 10.12358/j.issn.1001-5620.2023.01.011
YAN Ruichang, XU Ming, YU Haifa, et al.Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid,2023, 40(1):82-88 doi: 10.12358/j.issn.1001-5620.2023.01.011
Citation: YAN Ruichang, XU Ming, YU Haifa, et al.Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid,2023, 40(1):82-88 doi: 10.12358/j.issn.1001-5620.2023.01.011

巴彦河套盆地复杂储层固井技术

doi: 10.12358/j.issn.1001-5620.2023.01.011
基金项目: 中国石油天然气股份有限公司课题“华北油田河套盆地钻完井技术研究”(kt2022-5-2)
详细信息
    作者简介:

    闫睿昶,高级工程师,1972年生,毕业于中国石油大学(华东)钻井工程专业,现从事勘探开发与工程技术研究工作。E-mail:hzkf_yrc@petrochina.com.cn

  • 中图分类号: TE256

Well Cementing Technology for Complex Reservoirs in the Bayan Hetao Basin

  • 摘要: 巴彦河套盆地储层低成熟度、高渗透、低强度、高泥质含量特性显著,井壁岩性水敏性强,地层不稳定而易垮易漏,固井面临井深、封固段长、顶替效率低、界面胶结差和后期压裂对水泥环力学性能要求高等技术难题,采用界面增强材料DRJ-2S、膨胀增韧材料DRE-4S等固井关键材料,形成了综合性能良好的DRJ-2S批混批注固壁型冲洗隔离液和DRE高强度韧性微膨胀水泥浆体系。研究表明,DRJ-2S批混批注固壁型冲洗隔离液的冲洗效率达96%以上,较清水提高30%以上,且密度为1.60 g/cm3隔离液的7 d抗压强度为9.6 MPa,可明显提高混合流体抗压强度及水泥环界面胶结强度;90 ℃、21 MPa下,掺有(4%~6%)DRE-4S的高强度韧性微膨胀水泥浆的抗压强度不小于24 MPa,弹性模量不大于7 GPa,线性膨胀率不小于0.02%,具有较强的力学交变适应性。DRE高强度韧性微膨胀水泥浆体系、DRJ-2S批混批注固壁型冲洗隔离液及配套固井工艺技术在巴彦河套盆地规模应用40多井次,平均固井合格率为96.5%以上,推动了该地区整体固井质量大幅提升,为复杂油气井安全高效开发提供了强有力的技术保障,且具有很好的推广应用价值。

     

  • 表  1  不同密度的DRJ-2S批混批注固壁型  冲洗隔离液悬浮稳定性评价结果

    ρ/
    g·cm−3
    DRY-S1/
    %
    DRY-S3/
    %
    ρ2 h/(g·cm−3
    25 ℃90 ℃150 ℃
    1.300.50.4000.01
    1.400.50.5000.01
    1.500.60.6000.02
    1.600.80.800.010.02
    1.701.01.200.010.02
    下载: 导出CSV

    表  2  界面增强材料DRJ-2S对水泥浆体系 流动性及水泥环界面胶结强度的影响

    DRJ-2S/%ρ/g·cm−3流动度/cm水泥环界面胶结强度(90 ℃)/MPa
    2 d7 d
    01.2525.00.100.12
    481.2523.00.160.46
    601.3023.00.230.57
    751.3523.00.240.59
    901.4022.50.310.65
    1051.4522.00.310.71
    1251.5022.00.350.79
    1601.6021.00.390.89
      注:钻井液取自XH1-21X井完钻钻井液
    下载: 导出CSV

    表  3  DRJ-2S批混批注固壁型冲洗隔离液对钻井液的冲洗效率评价

    ρ钻井液/g·cm−3ρ冲洗隔离液/g·cm−3冲洗效率/%
    1.25清水61.6
    1.251.25(批混批注固壁型)98.8
    1.30清水60.3
    1.301.30(批混批注固壁型)98.6
    1.35清水59.5
    1.351.35(批混批注固壁型)98.2
    1.40清水58.9
    1.401.40(批混批注固壁型)98.8
    1.45清水55.2
    1.451.45(批混批注固壁型)98.6
      注:实验条件为常温常压;钻井液取自XH1-21X井完钻钻井液,并自行调制密度
    下载: 导出CSV

    表  4  混合流体抗压强度评价结果

    水泥浆∶
    隔离液
    p7 d/MPa
    (1.25 g·cm−3)
    p7 d/MPa
    (1.60 g·cm−3)
    水泥浆∶
    钻井液
    p7 d/MPa
    (1.25 g·cm−3)
    10∶0 32.6 32.6 10∶0 34.6
    9∶1 23.7 28.2 9∶1 15.3
    8∶2 17.4 25.3 8∶2 8.3
    7∶3 10.8 21.9 7∶3 3.2
    6∶4 8.1 19.8 6∶4 0.8
    5∶5 6.7 18.3 5∶5 0
    4∶6 5.6 16.5 4∶6 0
    3∶7 4.6 14.6 3∶7 0
    2∶8 2.4 13.1 2∶8 0
    1∶9 1.5 11.2 1∶9 0
    0∶10 1.1 9.6 0∶10 0
      注:实验条件为90 ℃、常压下养护20 min后装入70 ℃水浴中养护7 d;钻井液取自XH1-21X井完钻钻井液
    下载: 导出CSV

    表  5  加有不同加量DRE-4S的水泥石  力学性能(90 ℃、20.7 MPa)

    DRE-4S/
    %
    p24 h/
    MPa
    p7 d/
    MPa
    7 d线性
    膨胀率/%
    7 d弹性模量/
    GPa
    036.346.6-0.019.8
    231.339.30.008.1
    426.936.30.026.8
    624.134.10.035.9
    822.628.30.055.3
    1020.124.40.064.2
    下载: 导出CSV

    表  6  高强度韧性微膨胀水泥浆综合性能

    配方ρ/
    g·cm−3
    DRH-2L/
    %
    T/
    t下灰/
    s
    ρ/
    g·cm−3
    游离液/
    %
    FLAPI/
    mL
    t/
    min
    p/
    MPa
    弹性模量/
    GPa
    水泥石养护条件
    1#1.601.090180.0104532135.26.1380 ℃、21 MPa、
    48 h
    1.5110200.0204830429.56.32
    1.5120200.0205023429.76.48
    2.4140230.0304632619.86.62
    2#1.880.890220.0103622429.26.35T+30 ℃、21 MPa、
    24 h
    1.5110240.0104011031.66.54
    1.5120240.010428534.16.72
    2.5120260.0104028931.26.75
    3.2140260.0204434235.26.98
    下载: 导出CSV

    表  7  双密度三凝水泥浆的综合性能

    水泥浆ρ/(g·cm−3t下灰/sρ/(g·cm−3)​​​​​​​游离液/%FLAPI/mLt/minp/MPa养护条件
    领浆1.65250.0204830926.7100 ℃、21 MPa、48 h
    中间浆1.86220.0204018835.6140 ℃、21 MPa、24 h
    尾浆1.86230.0104013138.6150 ℃、21 MPa、24 h
    下载: 导出CSV
  • [1] 沈华,刘震,史原鹏,等. 河套盆地临河坳陷油气成藏过程解剖及勘探潜力分析[J]. 现代地质,2021,35(3):871-882.

    SHEN Hua, LIU Zhen, SHI Yuanpeng, et al. Hydrocarbon accumulation process and exploration potential in Linhe Depression, Hetao Basin[J]. Geoscience, 2021, 35(3):871-882.
    [2] 孙六一,蒲仁海,马占荣,等. 河套盆地吉兰泰凹陷烃源岩展布与勘探潜力[J]. 地球科学与环境学报,2018,40(5):612-626.

    SUN Liuyi, PU Renhai, MA Zhanrong, et al. Source rock distribution and exploration prospect of Jilantai Sag in Hetao Basin, China[J]. Journal of Earth Science and Environment, 2018, 40(5):612-626.
    [3] 闫睿昶,陈新勇,汝大军,等. 巴彦河套新区深井钻完井关键技术[J]. 石油钻采工艺,2022,44(1):15-19.

    YAN Ruichang, CHEN Xinyong, RU Dajun, et al. Key technologies for deep well drilling and completion in Bayan Hetao new area[J]. Oil Drilling & Production Technology, 2022, 44(1):15-19.
    [4] 王琼,胡晋军,耿志山,等. 渤海湾埕海新区水平井固井配套油气层保护技术[J]. 钻井液与完井液,2019,36(4):491-494.

    WANG Qiong, HU Jinjun, GENG Zhishan, et al. Reservoir protection technology used in cementing horizontal wells in Chenghai Xinqu, Bohai Bay[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):491-494.
    [5] 顾军,高德利,石凤歧,等. 论固井二界面封固系统及其重要性[J]. 钻井液与完井液,2005,22(2):7-10.

    GU Jun, GAO Deli, SHI Fengqi, et al. The two contacts cementing system in cementing job and its importance[J]. Drilling Fluid & Completion Fluid, 2005, 22(2):7-10.
    [6] 朱江林,许明标,张滨海. 高压深层井段地层岩性对固井质量影响研究[J]. 石油钻探技术,2007,35(2):39-41.

    ZHU Jianglin, XU Mingbiao, ZHAGN Binhai. Effects of formation lithology on cementing quality in high pressure deep section[J]. Petroleum Drilling Techniques, 2007, 35(2):39-41.
    [7] VIDICK B, KRUMMEL K. Impact of formation type on cement bond logs[R]. SPE/IADC 96022, 2005.
    [8] 段德松,龚才喜,王叔恩. 陕北低压高渗地层固井技术[J]. 石油钻探技术,1995,23(2):47-48.

    DUAN Desong, GONG Caixi, WANG Shuen. Cementing techniques for low-pressure and high-premeability formation in Shanbei area[J]. Petroleum Drilling Techniques, 1995, 23(2):47-48.
    [9] 李吉军. 高渗砂岩层固井界面胶结性能及增强技术研究[D]. 大庆: 东北石油大学, 2016.

    LI Jijun. Study on bonding interfacial performance and enhancement technology of hypertonic sandstone layer[D]. Daqing: Northeast Petroleum University, 2016.
    [10] 顾军,秦文政. MTA方法固井二界面整体固化胶结实验[J]. 石油勘探与开发,2010,37(2):238-243.

    GU Jun, QIN Wenzheng. Experiments on integrated solidification and cementation of the cement- formation interface based on mud cake to agglomerated cake (MTA) method[J]. Petroleum Exploration and Development, 2010, 37(2):238-243.
    [11] 丁士东,高德利,胡继良,等. 利用矿渣MTC技术解决复杂地层固井难题[J]. 石油钻探技术,2005,33(2):5-7.

    DING Shidong, GAO Deli, HU Jiliang, et al. Solving cementing challenges in complicate formation via the MTC technique[J]. Petroleum Drilling Techniques, 2005, 33(2):5-7.
    [12] 李小林,吴朝明,赵殊勋,等. 大港油田页岩油储层固井技术研究与应用[J]. 钻井液与完井液,2020,37(2):232-238.

    LI Xiaolin, WU Chaoming, ZHAO Shuxun, et al. Technology for cementing shale oil reservoirs in Dagang oilfield: Study and application[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):232-238.
    [13] 和传健,徐明,肖东海. 高密度冲洗隔离液的研究[J]. 钻井液与完井液,2004,21(5):19-21. doi: 10.3969/j.issn.1001-5620.2004.05.006

    HE Chuanjian, XU Ming, XIAO Donghai. Study on high density flushing spacer[J]. Drilling Fluid & Completion Fluid, 2004, 21(5):19-21. doi: 10.3969/j.issn.1001-5620.2004.05.006
  • 加载中
表(7)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  251
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 修回日期:  2022-10-15
  • 录用日期:  2022-10-18
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回