The Field Application of a Drilling Fluid for a Two-Interval Horizontal Well Penetrating Tight Gas Reservoir
-
摘要: 为解决苏里格气田致密气藏二开结构水平井钻井施工中地层塌漏矛盾突出、降摩减阻及井眼净化困难等技术难题,基于地质特性和泥岩坍塌机理分析,建立摩阻扭矩计算模型,对比变更井身结构摩阻及扭矩变化规律。通过室内研究筛选采用纳米乳液、软硬结合的封堵剂、多元复配的润滑剂和高效提切剂,研发出新型强封堵超润滑水基钻井液体系。室内研究显示,该钻井液体系具有强抑制性和封堵防塌性,能够有效延长硬脆性泥岩失稳周期,进而深度维持井壁稳定,同时也具备良好的流变性和润滑性,且含砂和固相含量低,降摩减阻效果显著。现场应用表明,应用该钻井液体系后下套管摩阻控制在350 kN以内,钻进下放摩阻降低24.21%,扭矩降低34.31%,平均钻井周期为29.04 d,平均机械钻速为17.64 m/h,较三开结构水平井提速36.5%,井塌划眼损失时间降低89.50%,为苏里格气田致密气藏二开结构水平井推广应用提供了有力保障。Abstract: Two-interval horizontal well profile is used to develop the tight gas reservoirs in the Sulige gas field. Downhole problems such as coexistence of borehole wall collapse and mud losses, high friction and poor hole cleaning have long remained difficulties during drilling operations. Based on the analyses of the geological characteristics and the collapse mechanisms of shale formations, a model for friction and torque calculation is developed. The changes of friction and torque between different well profiles are compared. A new drilling fluid with good plugging capacity and lubricity was developed with a nanophase emulsion, plugging agents o hard and soft particles, compound lubricants and high efficiency gel strength additives which were all selected through laboratory experiment. This drilling fluid has been successfully applied in field operations. Laboratory study has shown that this drilling fluid has good inhibitive capacity and good plugging capacity, and it can extend the instability period of hard and brittle shales, thereby maintaining the borehole wall stable. This drilling fluid also has good rheology and lubricity, low sand content and solid content. In field application, the resistance to casing string running into the hole was controlled within 350 kN, the friction to drilling string running into the hole was reduced by 24.21%, the torque was reduced by 34.31%, the average drilling time was 29.04 d, the average ROP was 17.64 m/h, which was 36.5% higher than that in drilling three-interval horizontal wells. Time spent in reaming because of borehole collapse was reduced by 89.50%. This drilling fluid has provided a powerful technical support for promoting the application of two-interval horizontal drilling in developing the tight gas reservoirs in the Sulige gas field.
-
表 1 石盒子组地层岩屑的黏土矿物组成分析
井号 黏土矿物相对含量/% 间层比/
%伊利石 蒙脱石 伊/蒙 高岭石 绿泥石 靖100-22 28.52 0 24.82 34.03 12.63 20 靖26-51 32.69 0 20.71 36.10 10.50 20 靖73-51H2 30.50 0 13.60 46.60 9.30 20 靖70-010H2 20.30 0 11.70 58.90 9.10 20 靖99-04H2 24.35 0 22.62 42.94 10.09 20 表 2 2种井身结构水平井摩阻扭矩对比
井身
结构不同水平段
长度/m钻进扭矩/
kN·m下钻摩阻/
t起钻摩阻/
t三开 1000 8.44 14.30 14.73 1500 11.03 20.18 21.17 二开 1000 22.05 30.49 31.13 1500 25.88 47.75 43.00 表 3 在基浆中加入不同封堵剂的性能
封堵剂 初滤失时间/s FLAPI/mL AV/ mPa·s 空白 28 29.0 8.0 1%有机封堵剂STF-1 57 14.2 11.0 2%有机封堵剂STF-1 71 12.6 12.0 1%超细碳酸钙 61 17.0 12.0 2%超细碳酸钙 70 15.4 13.0 2%石灰石 42 26.8 9.0 3%石灰石 45 25.6 10.0 1%纳米乳液CQRY-1 70 12.2 8.5 2%纳米乳液CQRY-1 75 11.8 9.0 表 4 在基浆中加入不同润滑剂的极压润滑系数降低率
类型 润滑剂 极压润滑
系数润滑系数
降低率%空白 0 0.0991 单一 2%TG-1 0.0802 18.90 2%CQRY-1 0.0857 13.52 2%纳米石墨 0.0903 8.88 二元 1%TG-1+1%CQRY-1 0.0651 34.31 1%DRB-1+1%纳米石墨 0.0797 19.57 1%TG-1+1%纳米石墨 0.0678 31.58 三元 1%TG-1+1%CQRY-1+
1%纳米石墨0.0563 43.18 表 5 在基浆中加入不同提切剂前后的流变性能
提切剂 PV/mPa·s YP/Pa YP/PV/Pa/mPa·s φ6 空白 9 2.0 0.22 2 0.2%XCD 15 6.5 0.43 5 0.2%PAC-HV 17 6.0 0.35 4 0.2%CMS 11 3.0 0.27 2 0.2%CMC-HV 17 5.0 0.29 3 表 6 二开与三开结构水平井钻井液性能对比
钻井液 ρ/
g·cm−3PV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sφ6 FLAPI/
mL三开井 1.07 22 6 0.27 3 6.0 二开井 1.09 20 8 0.40 4 4.6 表 7 斜井段和水平段钻井液性能
钻井液 ρ/(g·cm−3) FV/s FLAPI/mL YP/Pa φ6 pH 斜井段 1.12~1.26 40~65 4~5 4~12 2~6 8~9 水平段 1.22~1.36 45~70 ≤4 7~15 3~7 8~9 表 8 2019~2021年三开结构水平井及二开结构水平井完成井的指标
井身结构 完井口数 平均井深/m 钻井周期/d 完井周期/d 建井周期/d 钻机月速/(m/台月) 机械钻速/(m·h−1) 三开 92 4715 42.93 6.28 52.83 2950 12.62 二开 68 4350 29.04 6.09 40.67 4027 17.64 对比差值 365 13.89 0.19 12.16 1077 5.02 对比率/% 7.74 32.25 3.03 23.02 36.51 39.78 -
[1] 史配铭,薛让平,王学枫,等. 苏里格气田致密气藏水平井优快钻井技术[J]. 石油钻探技术,2020,48(5):27-33. doi: 10.11911/syztjs.2020083SHI Peiming, XUE Rangping, WANG Xuefeng, et al. Optimized fast drilling technology for horizontal wells in the tight gas reservoirs in Sulige gas field[J]. Petroleum Drilling Techniques, 2020, 48(5):27-33. doi: 10.11911/syztjs.2020083 [2] 欧阳勇,刘汉斌,白明娜,等. 苏里格气田小井眼套管开窗侧钻水平井钻完井技术[J]. 油气藏评价与开发,2021,11(1):129-134. doi: 10.13809/j.cnki.cn32-1825/te.2021.01.018OUYANG Yong, Liu Hanbin, Bai Mingna, et al. Drilling and completion of sidetracking horizontal well with small hole casing in Sulige gas field[J]. Reservoir Evaluation and Development, 2021, 11(1):129-134. doi: 10.13809/j.cnki.cn32-1825/te.2021.01.018 [3] 孙元伟,时凤霞,印树明,等. 三开结构水平井安全钻进钻井液技术研究[J]. 内江科技,2017,38(7):37-38.SUN Yuanwei, SHI Fengxia, YIN Shuming, et al. Research on drilling fluid technology for safe drilling of horizontal wells with three-hole structure[J]. Nei Jiang Ke Ji, 2017, 38(7):37-38. [4] 杨碧学,宁金生,王可仁. 苏里格二开结构水平井钻井技术[J]. 内蒙古石油化工,2014,40(20):106-107.YANG Bixue, NING Jinsheng, WANG Keren. Drilling technology of Sulige second spud horizontal well[J]. Inner Mongolia Petrochemical Industry, 2014, 40(20):106-107. [5] 刘迎春. 水平井钻井技术难点及对策分析[J]. 西部探矿工程,2019,31(4):75-77. doi: 10.3969/j.issn.1004-5716.2019.04.027LIU Yinchun. Technical difficulties and Countermeasures of horizontal well drilling[J]. West-China Exploration Engineering, 2019, 31(4):75-77. doi: 10.3969/j.issn.1004-5716.2019.04.027 [6] 雷金海. 长水平段水平井钻井技术难点分析及对策分析[J]. 西部探矿工程,2021,33(8):107-108. doi: 10.3969/j.issn.1004-5716.2021.08.037LEI Jinhai. Analysis on technical difficulties and countermeasures of horizontal well drilling in long horizontal section[J]. West-China Exploration Engineering, 2021, 33(8):107-108. doi: 10.3969/j.issn.1004-5716.2021.08.037 [7] 王波,孙金声,申峰,等. 陆相页岩气水平井段井壁失稳机理及水基钻井液对策[J]. 天然气工业,2020,40(4):104-111. doi: 10.3787/j.issn.1000-0976.2020.04.013WANG Bo, SUN Jinsheng, SHEN Feng, et al. Mechanism of wellbore instability in continental shale gas horizontal sections and its water-based drilling fluid countermeasures[J]. Natural Gas Industry, 2020, 40(4):104-111. doi: 10.3787/j.issn.1000-0976.2020.04.013 [8] 王香增,高胜利,高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发,2014,41(3):294-304. doi: 10.11698/PED.2014.03.04WANG Xiangzeng, GAO Shengli, GAO Chao, et al. Geological features of mesozoic continental shale gas in south of Ordos basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3):294-304. doi: 10.11698/PED.2014.03.04 [9] 雷宇,王凤琴,刘红军,等. 鄂尔多斯盆地中生界页岩气成藏地质条件[J]. 天然气与石油,2011,29(6):49-54. doi: 10.3969/j.issn.1006-5539.2011.06.014LEI Yu, WANG Fengqin, LIU Hongjun, et al. Geological conditions of mesozoic shale gas accumulation in Ordos basin[J]. Oil and Gas Field Development, 2011, 29(6):49-54. doi: 10.3969/j.issn.1006-5539.2011.06.014 [10] 王凯,韩佩,章侯博. 浅谈苏里格二开水平井钻井液封堵性的重要性[J]. 化工管理,2017,12:40-42. doi: 10.3969/j.issn.1008-4800.2017.02.035WANG Kai, HAN Pei, ZHANG Houbo. Talking about the importance of plugging of drilling fluid in Sulige second horizontal well[J]. Chemical Management, 2017, 12:40-42. doi: 10.3969/j.issn.1008-4800.2017.02.035 [11] 罗显尧. 孤岛地区水平井摩阻分析与减摩技术研究[D]. 北京: 中国石油大学(北京), 2010: 34-36.LUO Xianyao. Friction analysis and friction reduction technology research of horizontal wells in isolated island area[D]. Beijing: China University of Petroleum (Beijing), 2010: 34-36. [12] 刘清友,敬俊,祝效华. 长水平段水平井钻进摩阻控制[J]. 石油钻采工艺,2016,38(1):18-22.LIU Qingyou, JIN Jun, ZHU Xiaohua. Control of friction resistance in drilling of horizontal well with long horizontal section[J]. Oil Drilling & Production Technology, 2016, 38(1):18-22. [13] 李明,汪志明,郝炳英,等. 钻柱旋转对大位移井井眼净化影响规律的研究[J]. 石油机械,2009,37(12):34-37.LI Ming, WANG Zhiming, HAO Bingying, et al. Study on the influence of drill string rotation on hole cleaning in extended reach wells[J]. China Petroleum Machinery, 2009, 37(12):34-37. [14] 高清春,雷鉴暄. 小井眼钻井环空清洁控制技术研究与应用[J]. 非常规油气,2014,1(3):59-63.GAO Qingchun, LEI Jianxuan. Research and application of annulus cleaning control technology in slim hole drilling[J]. Unconventional Oil & Gas, 2014, 1(3):59-63. [15] 孔勇,杨小华,徐江,等. 抗高温强封堵防塌钻井液体系研究与应用[J]. 钻井液与完井液,2016,33(6):17-22. doi: 10.3969/j.issn.1001-5620.2016.06.003KONG Yong, YANG Xiaohua, XU Jiang, et al. Study and application of a high temperature drilling fluid with strong plugging capacity[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):17-22. doi: 10.3969/j.issn.1001-5620.2016.06.003 [16] 张雅楠. 钻井液封堵性能对硬脆性泥页岩井壁稳定的影响[D]. 北京: 中国石油大学(北京), 2017: 40-47.ZHANG Yanan. Influence of plugging performance of drilling fluid on the stability of hard and brittle shale wellbore[D]. Beijing: China University of Petroleum (Beijing), 2017: 40-47. [17] 王金锡. 一种高性能水基钻井液润滑剂的研制与评价[D]. 北京: 中国石油大学(北京), 2019: 29-37.WANG Jinxi. Development and evaluation of a high performance water-based drilling fluid lubricant[D]. Beijing: China University of Petroleum (Beijing), 2019: 29-37. [18] 宣扬,钱晓琳,林永学,等. 水基钻井液润滑剂研究进展及发展趋势[J]. 油田化学,2017,34(4):721-726.XUAN Yang, QIAN Xiaolin, LIN Yongxue, et al. Research progress and development trend of water-based drilling fluid lubricants[J]. Oilfield Chemistry, 2017, 34(4):721-726. [19] SANTANNA V C, SILVA S L, SILVA R P, et al. Use of palygorskite as a viscosity enhancer in salted water-based muds: effect of concentration of palygorskite and salt[J]. Clay Minerals, 2020, 55(1):48-52. [20] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28-36.HU Zubiao, ZHANG Jinqin, WANG Qingchen,et al. Drilling fluid technology for ultra-long horizontal section of well Hua H50-7 in the Changqing oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4):28-36. [21] 吴满祥,牟杨琼杰,高洁. 对苏里格水平井水平段防漏防塌措施的探讨[J]. 钻井液与完井液,2016,33(3):46-50. doi: 10.3969/j.issn.1001-5620.2016.03.009WU Manxiang, MOUYANG Qiongjie, GAO Jie. Discussion on the mud loss and borehole wall collapse prevention in horizontal drilling in Sulige gas field[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):46-50. doi: 10.3969/j.issn.1001-5620.2016.03.009 -