留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井壁强化技术的研究及其在乐东区块的应用

邢希金 谢仁军 邱正松 李佳 高健

邢希金,谢仁军,邱正松,等. 井壁强化技术的研究及其在乐东区块的应用[J]. 钻井液与完井液,2023,40(1):67-72 doi: 10.12358/j.issn.1001-5620.2023.01.009
引用本文: 邢希金,谢仁军,邱正松,等. 井壁强化技术的研究及其在乐东区块的应用[J]. 钻井液与完井液,2023,40(1):67-72 doi: 10.12358/j.issn.1001-5620.2023.01.009
XING Xijin, XIE Renjun, QIU Zhengsong, et al.A study on borehole wall strengthening technique and its application in block ledong[J]. Drilling Fluid & Completion Fluid,2023, 40(1):67-72 doi: 10.12358/j.issn.1001-5620.2023.01.009
Citation: XING Xijin, XIE Renjun, QIU Zhengsong, et al.A study on borehole wall strengthening technique and its application in block ledong[J]. Drilling Fluid & Completion Fluid,2023, 40(1):67-72 doi: 10.12358/j.issn.1001-5620.2023.01.009

井壁强化技术的研究及其在乐东区块的应用

doi: 10.12358/j.issn.1001-5620.2023.01.009
基金项目: 中海油研究总院有限公司综合科研“超高温高压开发井钻完井风险评估与对策研究”(YXKY-ZX 09 2021)
详细信息
    作者简介:

    邢希金,高级工程师,1981年生,主要从事海洋石油开发油田化学相关设计与研究工作。E-mail:xingxj2@cnooc.com.cn

  • 中图分类号: TE283

A Study on Borehole Wall Strengthening Technique and Its Application in Block Ledong

  • 摘要: 乐东区块构造位于莺歌海盆地的凹陷斜坡带,属于典型的海上超高温高压区块,地层安全密度窗口窄,深层井漏问题突出,严重制约了乐东气田的勘探与开发。针对该区块的井漏技术难题,通过井史资料统计,分析了该区块的漏失特征及漏失机理。基于黏滞单元法,模拟了井壁强化作用前后的井周应力变化,并预测了预充填裂缝开度。基于新型可变裂缝封堵模拟实验装置,开展了井壁强化材料粒径及浓度优化实验研究。实验结果表明,较优粒度匹配准则为D50准则,合理浓度为5%。基于乐东区块抗高温油基钻井液,优化构建了井壁强化钻井液体系配方。综合评价表明,该井壁强化配方对钻井液的流变性影响较小,砂床滤失侵入深度仅为1.5 cm,1 mm动态裂缝封堵承压能力达12 MPa以上。

     

  • 图  1  乐东区块有限元分析模型示意图

    图  2  乐东区块裂缝开度预测结果

    图  3  测试目标区块井壁强化工作液渗透性漏失封堵实验

    图  4  井壁强化钻井液可变裂缝封堵模拟实验

    表  1  乐东区块黄流组漏失复杂情况统计结果

    井号漏失深度/mρ钻井液/(g·m−3)漏失量/m3漏失速率/(m3·h−1)漏失原因处理结果
    X-1-1井4085、4098、40502.217.2523、10、35高密度钻井液压漏地层堵漏成功
    X-1-2井41032.1555.615压力窗口窄,地层承压能力低堵漏6次,未成功
    X-1-4井40522.2390.0压井期间高密度钻井液压漏地层井底未压稳下发生井漏,无有效处理方案
    X-1-6井4105、43292.33、2.31黄流组二段II、IV、V气组地层存在大段诱导缝堵漏成功
    X-1-10井3936、39722.30、2.283936 m压井期间高密度钻井液压漏地层,3972.5 m钻井期间漏失堵漏成功
    下载: 导出CSV

    表  2  不同封堵配方砂床滤失封堵实验结果

    粒径匹配准则16~18目/%18~24目/%24~30目/%30~45目/%45~80目/%侵入深度/cm承压强度/MPa
    D9010.022.522.522.522.52.436.42
    D5050.012.512.512.512.51.818.71
    1/312.512.512.512.550.01.977.53
    2/325.025.016.017.017.02.217.87
    下载: 导出CSV

    表  3  不同加量井壁强化材料的砂床滤失封堵实验

    井壁强化材料/%侵入深度/cm承压强度/MPa井壁强化材料/%侵入深度/cm承压强度/MPa
    31.838.6261.3112.86
    41.6810.2870.8413.11
    51.5212.19
      注:测试条件为30 min、0.7 MPa
    下载: 导出CSV

    表  4  井壁强化工作液热滚前后的流变性能

    工作液
    类型
    老化
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    油基钻井液热滚前665883/4
    200 ℃、16 h8271115/11
    油基钻井液+
    碳酸钙
    热滚前7060103/5
    200 ℃、16 h8570156/13
    下载: 导出CSV
  • [1] 黄静,马帅,李文拓,等. 乐东A区块高温高压井漏失问题及井壁强化技术研究[J]. 重庆科技学院学报(自然科学版),2019,21(6):51-55. doi: 10.19406/j.cnki.cqkjxyxbzkb.2019.06.010

    HUANG Jing, MA Shuai, LI Wentuo, et al. Leak-off and wellbore strengthening technology of high temperature and high pressure well in ledong block[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2019, 21(6):51-55. doi: 10.19406/j.cnki.cqkjxyxbzkb.2019.06.010
    [2] 刘均一,郭保雨. 页岩气水平井强化井壁水基钻井液研究[J]. 西安石油大学学报(自然科学版),2019,34(2):86-92.

    LIU Junyi, GUO Baoyu. Study on water-based drilling fluid for strengthening wellbore of horizontal shale gas wells[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2019, 34(2):86-92.
    [3] 罗鸣,吴江,陈浩东,等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8-12. doi: 10.11911/syztjs.2019024

    LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-high temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1):8-12. doi: 10.11911/syztjs.2019024
    [4] 邱正松,暴丹,李佳,等. 井壁强化机理与致密承压封堵钻井液技术新进展[J]. 钻井液与完井液,2018,35(4):1-6. doi: 10.3969/j.issn.1001-5620.2018.04.001

    QIU Zhengsong, BAO Dan, LI Jia, et al. Mechanisms of wellbore strengthening and new advances in lost circulation control with dense pressure bearing zone[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):1-6. doi: 10.3969/j.issn.1001-5620.2018.04.001
    [5] 李佳,邱正松,宋丁丁,等. 井壁强化作用影响因素的数值模拟[J]. 钻井液与完井液,2017,34(2):1-8. doi: 10.3969/j.issn.1001-5620.2017.02.001

    LI Jia, QIU Zhengsong, SONG Dingding, et al. Numeric simulation of factors affecting the strengthening of borehole wall[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):1-8. doi: 10.3969/j.issn.1001-5620.2017.02.001
    [6] 卢小川,范白涛,赵忠举,等. 国外井壁强化技术的新进展[J]. 钻井液与完井液,2012,29(6):74-78. doi: 10.3969/j.issn.1001-5620.2012.06.023

    LU Xiaochuan, FAN baitao, ZHAO zhongju, et al. New research progress on wellbore strengthening technology[J]. Drilling Fluid & Completion Fluid, 2012, 29(6):74-78. doi: 10.3969/j.issn.1001-5620.2012.06.023
    [7] GUO Q , COOK J , WAY P , et al. A comprehensive experimental study on wellbore strengthening[C]. IADC/SPE drilling conference and exhibition. OnePetro, 2014.
    [8] ASTON M S, ALBERTY M W , MCLEAN M R , et al. Drilling fluids for wellbore strengthening[C]. IADC/SPE drilling conference. OnePetro, 2004.
    [9] FENG Y, GRAY K E. Review of fundamental studies on lost circulation and wellbore strengthening[J]. Journal of Petroleum Science and Engineering, 2017, 152:511-522. doi: 10.1016/j.petrol.2017.01.052
    [10] COOK J , GUO Q , WAY P , et al. The role of filtercake in wellbore strengthening[C]. IADC/SPE drilling conference and exhibition OnePetro, 2016.
    [11] ASTON M S , ALBERTY M W , DUNCUM S D, et al. A new treatment for wellbore strengthening in shale[C]. SPE annual technical conference and exhibition. OnePetro, 2007.
    [12] 韩成,黄凯文,罗鸣,等. 南海莺琼盆地高温高压井堵漏技术[J]. 石油钻探技术,2019,47(6):15-20. doi: 10.11911/syztjs.2019081

    HAN Cheng, HUANG Kaiwen, LUO Ming, et al. Plugging technology for hthp wells in the yingqiong basin of the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6):15-20. doi: 10.11911/syztjs.2019081
    [13] 向雄,陈缘博,张立权,等. D气田衰竭疏松石英砂岩浅气层漏失机理及防漏技术[J]. 钻井液与完井液,2020,37(5):613-619.

    XIANG Xiong, CHEN Yuanbo, ZHANG Liquan, et al. Mud losses into depleted loose quartz sandstone shallow gas zones in gas field D: mechanisms and preventing technology[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):613-619.
    [14] 廖高龙,郭书生,胡益涛,等. 地质工程一体化理念在南海高温高压井的实践[J]. 中国石油勘探,2020,25(2):142-154. doi: 10.3969/j.issn.1672-7703.2020.02.014

    LIAO Gaolong, GUO Shusheng, HU Yitao, et al. Practice of the geology-engineering integration concept in high temperature and high pressure wells in South China Sea[J]. China Petroleum Exploration, 2020, 25(2):142-154. doi: 10.3969/j.issn.1672-7703.2020.02.014
    [15] GUO Q, FENG Y Z, JIN Z H. Fracture aperture for wellbore strengthening applications[C]. 45th US rock mechanics/geomechanics symposium, 2011.
    [16] RAZAVI O, VAJARGAH A K, VAN OORT E, et al. Optimization of wellbore strengthening treatment in permeable formations[C]. SPE Western Regional Meeting, 2016.
    [17] WANG H, TOWLER B F , SOLIMAN M Y , et al. Wellbore strengthening without propping fractures: analysis for strengthening a wellbore by sealing fractures alone[C]. International Petroleum Technology Conference. OnePetro, 2008.
    [18] SAVARI S, WHITFILL D L, JAMISON D E, et al. A Method to evaluate lost-circulation materials-investigation of effective wellbore-strengthening applications[J]. SPE Drilling & Completion, 2014, 29(3):329-333.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  274
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-06
  • 修回日期:  2022-11-02
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回