Study on Construction Parameters of Pressure Bearing Plugging Considering High Stress Difference
-
摘要: 承压堵漏作为低承压地层漏失防治的常用技术,理论体系和堵漏材料取得长足进步的同时,重要的施工参数却未获得足够的关注。为此,根据井下地应力环境,优选了高强度的堵漏材料,确立了不同施工参数和随钻堵漏的承压堵漏实验方案,使用自研的大型真三轴承压堵漏实验设备,在致密砂岩试样(尺寸为300 mm×297 mm×297 mm)上产生诱导裂缝,观测了裂缝扩展规律,基于诱导裂缝开展了承压堵漏实验。研究表明:针对承压能力弱的地层,施工参数会导致井内压力变化,从而影响封堵效果;反复在同一地层开展堵漏作业会造成裂缝扩展,导致封堵效果降低;堵漏浆进入裂缝的先后顺序以及封堵层的结构均与裂缝的几何参数密切相关。本文取得的规律性认识可为承压堵漏方案制定提供参考。Abstract: As a common technology for the prevention and control of lost circulation in low pressure bearing formations, the theoretical system and plugging materials have made great progress, but the important construction parameters have not been paid enough attention. Therefore, according to the underground in-situ stress environment, this paper selects high-strength plugging materials, and establishes the pressure plugging experimental scheme with different construction parameters and plugging materials while drilling.The self-developed large-scale true triaxial pressure plugging experimental equipment is used to conduct the test on the dense sandstone sample (size: 300 mm×297 mm×297 mm), and the hydraulic-fracture propagation law was observed. Based on the hydraulic-fracture, the pressure plugging experiment was carried out.According to the experimental results, for the formation with weak bearing capacity, the construction parameters will cause the pressure change in the well, thus affecting the plugging effect; repeated plugging operations in the same formation will cause fracture expansion and reduce the plugging effect; the sequence of plugging slurry entering the fracture and the structure of the plugging layer are closely related to the geometric parameters of the fracture. The regular knowledge obtained in this paper can provide some reference for the formulation of pressure plugging scheme.
-
表 1 岩样的物性参数
岩样岩性 ρ/(g ·cm-3) 单轴抗压强度/MPa 抗拉强度/MPa 弹性模量/MPa 泊松比 渗透率/mD 孔隙度/% 致密砂岩 2.36 58.8 12.7 30.4 0.24 0.1~0.6 10~15 表 2 实验方案
岩样
编号实验
序号流体
类型σH/σh/σv
MPa初始
压力/
MPa注入
速度/
mL·min-1停注
时间/
min实验
目的1# 1# 桥浆 20/2/22 2.73 10 5 评价不同注
入量的影响2# 1.50 10 5 3# 0.80 10 5 4# 2.73 15 5 评价不同注入
速度的影响5# 2.73 30 5 6# 2.73 10 10 评价不同时
间的影响7# 2.73 10 15 2# 8# 随钻
堵漏浆20/2/22 10 5 评价随钻堵漏
剂的封堵效果9# 10 5 表 3 承压堵漏实验结果
岩样编号 实验序号 堵漏浆类型 破裂压力/MPa 重张压力/MPa 承压值/MPa 承压差值/MPa 1# 1# 桥浆 36.87 5.40 17.62 12.22 2# 13.23 7.83 3# 9.80 4.40 4# 10.06 4.66 5# 8.25 2.85 6# 7.53 2.13 7# 8.65 3.25 2# 8# 随钻堵漏浆 19.93 8.08 26.13 18.05 9# 22.63 13.83 -
[1] 孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638. doi: 10.11698/PED.2021.03.18SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638. doi: 10.11698/PED.2021.03.18 [2] 吕开河. 钻井工程中井漏预防与堵漏技术研究与应用[D]. 北京: 中国石油大学, 2007.LYU Kaihe. Study and application of lost circulation resistance and control technology during drilling[D]. Beijing: China University of Petroleum, 2007. [3] 杨争,谭敏. DL-2H堵漏仪自动控制设计与应用[J]. 复杂油气藏,2010,3(3):84-86. doi: 10.3969/j.issn.1674-4667.2010.03.022YANG Zheng, TAN Ming. Design of automatic control for DL-2Hlost circulation evaluation device and its application[J]. Complex Hydrocarbon Reservoirs, 2010, 3(3):84-86. doi: 10.3969/j.issn.1674-4667.2010.03.022 [4] MORITA N, BLACK AD, FUH G-F, et al. A method to evaluate lost circulation materials–investigation of effective wellbore strengthening applications[C]. SPE-167977-MS, 2014. [5] NWAOJI C O, HARELAND G, HUSEIN M, et al. Wellbore strengthening-nanoparticle drilling fluid experimental design using hydraulic fracture apparatus[C]. SPE-163434-MS. 2013. [6] CONTRERAS O, HARELAND G, HUSEIN M, et al. Experimental investigation on wellbore strengthening in shales by means of nanoparticle-based drilling fluids[C]. SPE-170589-MS, 2014. [7] SALEHI S, KIRAN R. Integrated experimental and analytical wellbore strengthening solutions by mud plastering effects[J]. Journal of Energy Resources and Technology, 2016, 138(3):032904. doi: 10.1115/1.4032236 [8] CAO C, PU X, ZHAO Z, et al. Experimental investigation on wellbore strengthening based on a hydraulic fracturing apparatus[J]. Journal of Energy Resources and Technology, 2018, 140(5):052902. doi: 10.1115/1.4038381 [9] 贾利春,谢洪印,谭清明. 三轴承压堵漏模拟实验研究[J]. 钻采工艺,2017,40(1):14-17.JIA Lichun, XIE Hongying, TAN Qingming. Experimental study on the plugging effect by using triaxial test system[J]. Drilling & Production Technology, 2017, 40(1):14-17. [10] 赵正国, 蒲晓林, 王贵, 等.裂缝性漏失的桥塞堵漏钻井液技术[J].钻井液与完井液, 2012, 29( 3) : 44-46.ZHAO Zhengguo, PU Xiaolin, WANG Gui, et al. Study on drilling fluid bridge plugging technology for fractured formation[J]. Drilling Fluid & Completion Fluid, 2012, 29(3): 44-46. -